forked from mindspore-Ecosystem/mindspore
460 lines
22 KiB
Python
Executable File
460 lines
22 KiB
Python
Executable File
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test ops """
|
|
import numpy as np
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import functional as F
|
|
from mindspore.ops import operations as P
|
|
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
|
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception
|
|
|
|
|
|
class Conv2DBackpropInputNet(nn.Cell):
|
|
def __init__(self, net, x_shape):
|
|
super(Conv2DBackpropInputNet, self).__init__()
|
|
self.net = net
|
|
self.x_shape = x_shape
|
|
|
|
def construct(self, dout, w):
|
|
return self.net(dout, w, self.x_shape)
|
|
|
|
|
|
class TopKNet(nn.Cell):
|
|
def __init__(self, net, k):
|
|
super(TopKNet, self).__init__()
|
|
self.net = net
|
|
self.k = k
|
|
|
|
def construct(self, x):
|
|
return self.net(x, self.k)
|
|
|
|
|
|
raise_set = [
|
|
# input is scalar
|
|
('Flatten0', {
|
|
'block': (P.Flatten(), {'exception': TypeError, 'error_keywords': ['Flatten']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
# dim of input is zero
|
|
('Flatten1', {
|
|
'block': (P.Flatten(), {'exception': ValueError, 'error_keywords': ['Flatten']}),
|
|
'desc_inputs': [F.scalar_to_tensor(5.0)],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('Softmax0', {
|
|
'block': (P.Softmax(), {'exception': TypeError, 'error_keywords': ['Softmax']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
# axis is empty tuple
|
|
('Softmax1', {
|
|
'block': (P.Softmax(axis=()), {'exception': ValueError, 'error_keywords': ['Softmax']}),
|
|
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# axis value is not in range
|
|
('Softmax2', {
|
|
'block': (P.Softmax(axis=2), {'exception': ValueError, 'error_keywords': ['Softmax']}),
|
|
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('LogSoftmax0', {
|
|
'block': (P.LogSoftmax(), {'exception': TypeError, 'error_keywords': ['LogSoftmax']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
# axis value is not in range
|
|
('LogSoftmax1', {
|
|
'block': (P.LogSoftmax(axis=2), {'exception': ValueError, 'error_keywords': ['LogSoftmax']}),
|
|
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('ReLU0', {
|
|
'block': (P.ReLU(), {'exception': TypeError, 'error_keywords': ['ReLU']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
# input is Tensor(Bool)
|
|
('ReLU1', {
|
|
'block': (P.ReLU(), {'exception': TypeError, 'error_keywords': ['ReLU']}),
|
|
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('ReLU60', {
|
|
'block': (P.ReLU6(), {'exception': TypeError, 'error_keywords': ['ReLU6']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
# input is Tensor(int32)
|
|
('ReLU61', {
|
|
'block': (P.ReLU6(), {'exception': TypeError, 'error_keywords': ['ReLU6']}),
|
|
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('Elu0', {
|
|
'block': (P.Elu(), {'exception': TypeError, 'error_keywords': ['Elu']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
# input is Tensor(int32)
|
|
('Elu1', {
|
|
'block': (P.Elu(), {'exception': TypeError, 'error_keywords': ['Elu']}),
|
|
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('Sigmoid0', {
|
|
'block': (P.Sigmoid(), {'exception': TypeError, 'error_keywords': ['Sigmoid']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
# input is Tensor(int32)
|
|
('Sigmoid1', {
|
|
'block': (P.Sigmoid(), {'exception': TypeError, 'error_keywords': ['Sigmoid']}),
|
|
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('Tanh0', {
|
|
'block': (P.Tanh(), {'exception': TypeError, 'error_keywords': ['Tanh']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('BatchNorm0', {
|
|
'block': (P.BatchNorm(is_training=False), {'exception': TypeError, 'error_keywords': ['BatchNorm']}),
|
|
'desc_inputs': [5.0, 5.0, 5.0, 5.0, 5.0],
|
|
'skip': ['backward']}),
|
|
# is_training=False and mean=None
|
|
('BatchNorm1', {
|
|
'block': (P.BatchNorm(is_training=False), {'exception': TypeError, 'error_keywords': ['BatchNorm']}),
|
|
'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([5, 3]).astype(np.float32)),
|
|
Tensor(np.ones([5, 3]).astype(np.float32)), None, None],
|
|
'skip': ['backward']}),
|
|
# is_training=True and mean=None
|
|
('BatchNorm2', {
|
|
'block': (P.BatchNorm(is_training=True), {'exception': TypeError, 'error_keywords': ['BatchNorm']}),
|
|
'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float32)),
|
|
Tensor(np.ones([3]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float16)),
|
|
Tensor(np.ones([3]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# scale and bias rank > 1
|
|
('BatchNorm3', {
|
|
'block': (P.BatchNorm(is_training=True), {'exception': ValueError, 'error_keywords': ['BatchNorm']}),
|
|
'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([5, 3]).astype(np.float32)),
|
|
Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float32)),
|
|
Tensor(np.ones([3]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# scale and bias shape not match
|
|
('BatchNorm4', {
|
|
'block': (P.BatchNorm(is_training=True), {'exception': ValueError, 'error_keywords': ['BatchNorm']}),
|
|
'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float32)),
|
|
Tensor(np.ones([7]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float32)),
|
|
Tensor(np.ones([3]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# is_training=False, mean and variance shape not match
|
|
('BatchNorm5', {
|
|
'block': (P.BatchNorm(is_training=False), {'exception': ValueError, 'error_keywords': ['BatchNorm']}),
|
|
'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float32)),
|
|
Tensor(np.ones([3]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float32)),
|
|
Tensor(np.ones([5]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# is_training=False, mean and scale shape not match
|
|
('BatchNorm6', {
|
|
'block': (P.BatchNorm(is_training=False), {'exception': ValueError, 'error_keywords': ['BatchNorm']}),
|
|
'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float32)),
|
|
Tensor(np.ones([3]).astype(np.float32)), Tensor(np.ones([5]).astype(np.float32)),
|
|
Tensor(np.ones([5]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('Conv2D0', {
|
|
'block': (P.Conv2D(2, (5, 5)), {'exception': TypeError, 'error_keywords': ['Conv2D']}),
|
|
'desc_inputs': [5.0, 5.0],
|
|
'skip': ['backward']}),
|
|
# input is Tensor(bool)
|
|
('Conv2D1', {
|
|
'block': (P.Conv2D(2, (5, 5)), {'exception': TypeError, 'error_keywords': ['Conv2D']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.bool_)), Tensor(np.ones([5]).astype(np.bool_))],
|
|
'skip': ['backward']}),
|
|
# input x and w type mismatch
|
|
('Conv2D2', {
|
|
'block': (P.Conv2D(2, (5, 5)), {'exception': TypeError, 'error_keywords': ['Conv2D']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.float32)), Tensor(np.ones([5]).astype(np.float16))],
|
|
'skip': ['backward']}),
|
|
# rank of x is not 4
|
|
('Conv2D3', {
|
|
'block': (P.Conv2D(2, (5, 5)), {'exception': ValueError, 'error_keywords': ['Conv2D']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1]).astype(np.float32)), Tensor(np.ones([1, 1, 9, 9]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# rank of 2 is not 4
|
|
('Conv2D4', {
|
|
'block': (P.Conv2D(2, (5, 5)), {'exception': ValueError, 'error_keywords': ['Conv2D']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 9, 9]).astype(np.float32)),
|
|
Tensor(np.ones([1, 1, 9]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# x_shape[1] / group != w_shape[1]
|
|
('Conv2D5', {
|
|
'block': (P.Conv2D(2, (5, 5)), {'exception': ValueError, 'error_keywords': ['Conv2D']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 9, 9]).astype(np.float32)),
|
|
Tensor(np.ones([1, 2, 9, 9]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# out_channel != w_shape[0]
|
|
('Conv2D6', {
|
|
'block': (P.Conv2D(2, (5, 5)), {'exception': ValueError, 'error_keywords': ['Conv2D']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 9, 9]).astype(np.float32)),
|
|
Tensor(np.ones([1, 1, 9, 9]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# kernel_size != w_shape[2:4]
|
|
('Conv2D7', {
|
|
'block': (P.Conv2D(2, (5, 5)), {'exception': ValueError, 'error_keywords': ['Conv2D']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 9, 9]).astype(np.float32)),
|
|
Tensor(np.ones([2, 1, 5, 6]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('DepthwiseConv2dNative0', {
|
|
'block': (P.DepthwiseConv2dNative(2, (5, 5)),
|
|
{'exception': TypeError, 'error_keywords': ['DepthwiseConv2dNative']}),
|
|
'desc_inputs': [5.0, 5.0],
|
|
'skip': ['backward']}),
|
|
# input is Tensor(bool)
|
|
('DepthwiseConv2dNative1', {
|
|
'block': (P.DepthwiseConv2dNative(2, (5, 5)),
|
|
{'exception': TypeError, 'error_keywords': ['DepthwiseConv2dNative']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.bool_)), Tensor(np.ones([5]).astype(np.bool_))],
|
|
'skip': ['backward']}),
|
|
# input x and w type mismatch
|
|
('DepthwiseConv2dNative2', {
|
|
'block': (P.DepthwiseConv2dNative(2, (5, 5)),
|
|
{'exception': TypeError, 'error_keywords': ['DepthwiseConv2dNative']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.float32)), Tensor(np.ones([5]).astype(np.float16))],
|
|
'skip': ['backward']}),
|
|
# rank of x is not 4
|
|
('DepthwiseConv2dNative3', {
|
|
'block': (P.DepthwiseConv2dNative(2, (5, 5)),
|
|
{'exception': ValueError, 'error_keywords': ['DepthwiseConv2dNative']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1]).astype(np.float32)), Tensor(np.ones([1, 1, 9, 9]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# rank of 2 is not 4
|
|
('DepthwiseConv2dNative4', {
|
|
'block': (P.DepthwiseConv2dNative(2, (5, 5)),
|
|
{'exception': ValueError, 'error_keywords': ['DepthwiseConv2dNative']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 9, 9]).astype(np.float32)),
|
|
Tensor(np.ones([1, 1, 9]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# x_shape[1] != w_shape[1]
|
|
('DepthwiseConv2dNative5', {
|
|
'block': (P.DepthwiseConv2dNative(2, (5, 5)),
|
|
{'exception': ValueError, 'error_keywords': ['DepthwiseConv2dNative']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 9, 9]).astype(np.float32)),
|
|
Tensor(np.ones([1, 2, 9, 9]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# kernel_size != w_shape[2:4]
|
|
('DepthwiseConv2dNative6', {
|
|
'block': (P.DepthwiseConv2dNative(2, (5, 5)),
|
|
{'exception': ValueError, 'error_keywords': ['DepthwiseConv2dNative']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 9, 9]).astype(np.float32)),
|
|
Tensor(np.ones([2, 1, 5, 6]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('MaxPoolWithArgmax0', {
|
|
'block': (P.MaxPoolWithArgmax(), {'exception': TypeError, 'error_keywords': ['MaxPoolWithArgmax']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
# input is Tensor(bool)
|
|
('MaxPoolWithArgmax1', {
|
|
'block': (P.MaxPoolWithArgmax(), {'exception': TypeError, 'error_keywords': ['MaxPoolWithArgmax']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.bool_))],
|
|
'skip': ['backward']}),
|
|
# rank of x is not 4
|
|
('MaxPoolWithArgmax2', {
|
|
'block': (P.MaxPoolWithArgmax(), {'exception': ValueError, 'error_keywords': ['MaxPoolWithArgmax']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 32]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# kernel size is invalid(very large)
|
|
('MaxPoolWithArgmax3', {
|
|
'block': (P.MaxPoolWithArgmax(ksize=50), {'exception': ValueError, 'error_keywords': ['MaxPoolWithArgmax']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 32, 32]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('MaxPool0', {
|
|
'block': (P.MaxPool(), {'exception': TypeError, 'error_keywords': ['MaxPool']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
# rank of x is not 4
|
|
('MaxPool1', {
|
|
'block': (P.MaxPool(), {'exception': ValueError, 'error_keywords': ['MaxPool']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 32]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# rank of x is not 4
|
|
('MaxPool2', {
|
|
'block': (P.MaxPool(ksize=50, strides=1), {'exception': ValueError, 'error_keywords': ['MaxPool']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 32, 32]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('AvgPool0', {
|
|
'block': (P.AvgPool(), {'exception': TypeError, 'error_keywords': ['AvgPool']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
# rank of x is not 4
|
|
('AvgPool1', {
|
|
'block': (P.AvgPool(), {'exception': ValueError, 'error_keywords': ['AvgPool']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 32]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# rank of x is not 4
|
|
('AvgPool2', {
|
|
'block': (P.AvgPool(ksize=50, strides=1), {'exception': ValueError, 'error_keywords': ['AvgPool']}),
|
|
'desc_inputs': [Tensor(np.ones([1, 1, 32, 32]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('Conv2DBackpropInput0', {
|
|
'block': (Conv2DBackpropInputNet(P.Conv2DBackpropInput(2, (5, 5)), (2, 3)),
|
|
{'exception': TypeError, 'error_keywords': ['Conv2DBackpropInput']}),
|
|
'desc_inputs': [5.0, 5.0],
|
|
'skip': ['backward']}),
|
|
# input is Tensor(bool)
|
|
('Conv2DBackpropInput1', {
|
|
'block': (Conv2DBackpropInputNet(P.Conv2DBackpropInput(2, (5, 5)), (2, 3)),
|
|
{'exception': TypeError, 'error_keywords': ['Conv2DBackpropInput']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.bool_)), Tensor(np.ones([5]).astype(np.bool_))],
|
|
'skip': ['backward']}),
|
|
# types of doutput and w mismatch
|
|
('Conv2DBackpropInput2', {
|
|
'block': (Conv2DBackpropInputNet(P.Conv2DBackpropInput(2, (5, 5)), (2, 3)),
|
|
{'exception': TypeError, 'error_keywords': ['Conv2DBackpropInput']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.int32)), Tensor(np.ones([5]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# types x_size is not tuple
|
|
('Conv2DBackpropInput3', {
|
|
'block': (Conv2DBackpropInputNet(P.Conv2DBackpropInput(2, (5, 5)), 2),
|
|
{'exception': TypeError, 'error_keywords': ['Conv2DBackpropInput']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.int32)), Tensor(np.ones([5]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# types x_size is not tuple(int,...)
|
|
('Conv2DBackpropInput4', {
|
|
'block': (Conv2DBackpropInputNet(P.Conv2DBackpropInput(2, (5, 5)), (2, 3.0)),
|
|
{'exception': TypeError, 'error_keywords': ['Conv2DBackpropInput']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.int32)), Tensor(np.ones([5]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('BiasAdd0', {
|
|
'block': (P.BiasAdd(), {'exception': TypeError, 'error_keywords': ['BiasAdd']}),
|
|
'desc_inputs': [5.0, 5.0],
|
|
'skip': ['backward']}),
|
|
# input is Tensor(bool)
|
|
('BiasAdd1', {
|
|
'block': (P.BiasAdd(), {'exception': TypeError, 'error_keywords': ['BiasAdd']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.bool_)), Tensor(np.ones([5]).astype(np.bool_))],
|
|
'skip': ['backward']}),
|
|
# types of x and bias mismatch
|
|
('BiasAdd2', {
|
|
'block': (P.BiasAdd(), {'exception': TypeError, 'error_keywords': ['BiasAdd']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.int32)), Tensor(np.ones([5]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# rank of x less than 2
|
|
('BiasAdd3', {
|
|
'block': (P.BiasAdd(), {'exception': ValueError, 'error_keywords': ['BiasAdd']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.float32)), Tensor(np.ones([5]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# rank of bias is not equal to 1
|
|
('BiasAdd4', {
|
|
'block': (P.BiasAdd(), {'exception': ValueError, 'error_keywords': ['BiasAdd']}),
|
|
'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([5, 3]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# b_shape[0] != x_shape[1]
|
|
('BiasAdd5', {
|
|
'block': (P.BiasAdd(), {'exception': ValueError, 'error_keywords': ['BiasAdd']}),
|
|
'desc_inputs': [Tensor(np.ones([5, 3]).astype(np.float32)), Tensor(np.ones([5]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input x is scalar
|
|
('TopK0', {
|
|
'block': (TopKNet(P.TopK(), 5), {'exception': TypeError, 'error_keywords': ['TopK']}),
|
|
'desc_inputs': [5.0],
|
|
'skip': ['backward']}),
|
|
# input x is Tensor(bool)
|
|
('TopK1', {
|
|
'block': (TopKNet(P.TopK(), 5), {'exception': TypeError, 'error_keywords': ['TopK']}),
|
|
'desc_inputs': [Tensor(np.ones([10]).astype(np.bool_))],
|
|
'skip': ['backward']}),
|
|
# k is not integer
|
|
('TopK2', {
|
|
'block': (TopKNet(P.TopK(), 5.0), {'exception': TypeError, 'error_keywords': ['TopK']}),
|
|
'desc_inputs': [Tensor(np.ones([10]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('SoftmaxCrossEntropyWithLogits0', {
|
|
'block': (P.SoftmaxCrossEntropyWithLogits(),
|
|
{'exception': TypeError, 'error_keywords': ['SoftmaxCrossEntropyWithLogits']}),
|
|
'desc_inputs': [5.0, 5.0],
|
|
'skip': ['backward']}),
|
|
# input is Tensor(bool)
|
|
('SoftmaxCrossEntropyWithLogits1', {
|
|
'block': (P.SoftmaxCrossEntropyWithLogits(),
|
|
{'exception': TypeError, 'error_keywords': ['SoftmaxCrossEntropyWithLogits']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.bool_)), Tensor(np.ones([5]).astype(np.bool_))],
|
|
'skip': ['backward']}),
|
|
# types of logits and labels mismatch
|
|
('SoftmaxCrossEntropyWithLogits2', {
|
|
'block': (P.SoftmaxCrossEntropyWithLogits(),
|
|
{'exception': TypeError, 'error_keywords': ['SoftmaxCrossEntropyWithLogits']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.float16)), Tensor(np.ones([5]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
# shapes of logits and labels mismatch
|
|
('SoftmaxCrossEntropyWithLogits3', {
|
|
'block': (P.SoftmaxCrossEntropyWithLogits(),
|
|
{'exception': ValueError, 'error_keywords': ['SoftmaxCrossEntropyWithLogits']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.float32)), Tensor(np.ones([3]).astype(np.float32))],
|
|
'skip': ['backward']}),
|
|
|
|
# input is scalar
|
|
('SparseSoftmaxCrossEntropyWithLogits0', {
|
|
'block': (P.SparseSoftmaxCrossEntropyWithLogits(),
|
|
{'exception': TypeError, 'error_keywords': ['SparseSoftmaxCrossEntropyWithLogits']}),
|
|
'desc_inputs': [5.0, 5.0],
|
|
'skip': ['backward']}),
|
|
# logits is Tensor(bool)
|
|
('SparseSoftmaxCrossEntropyWithLogits1', {
|
|
'block': (P.SparseSoftmaxCrossEntropyWithLogits(),
|
|
{'exception': TypeError, 'error_keywords': ['SparseSoftmaxCrossEntropyWithLogits']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.bool_)), Tensor(np.ones([5]).astype(np.bool_))],
|
|
'skip': ['backward']}),
|
|
# labels is Tensor(bool)
|
|
('SparseSoftmaxCrossEntropyWithLogits2', {
|
|
'block': (P.SparseSoftmaxCrossEntropyWithLogits(),
|
|
{'exception': TypeError, 'error_keywords': ['SparseSoftmaxCrossEntropyWithLogits']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.float32)), Tensor(np.ones([5]).astype(np.bool_))],
|
|
'skip': ['backward']}),
|
|
# logits_shape[0] != labels_shape[0]
|
|
('SparseSoftmaxCrossEntropyWithLogits3', {
|
|
'block': (P.SparseSoftmaxCrossEntropyWithLogits(),
|
|
{'exception': ValueError, 'error_keywords': ['SparseSoftmaxCrossEntropyWithLogits']}),
|
|
'desc_inputs': [Tensor(np.ones([5]).astype(np.float32)), Tensor(np.ones([3]).astype(np.int32))],
|
|
'skip': ['backward']}),
|
|
]
|
|
|
|
|
|
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
|
|
def test_check_exception():
|
|
return raise_set
|