forked from mindspore-Ecosystem/mindspore
205 lines
6.3 KiB
Python
205 lines
6.3 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test conv """
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from ..ut_filter import non_graph_engine
|
|
|
|
weight = Tensor(np.ones([2, 2]))
|
|
in_channels = 3
|
|
out_channels = 64
|
|
|
|
|
|
class Net(nn.Cell):
|
|
""" Net definition """
|
|
|
|
def __init__(self,
|
|
cin,
|
|
cout,
|
|
kernel_size,
|
|
stride=1,
|
|
pad_mode="valid",
|
|
padding=0,
|
|
dilation=1,
|
|
group=1,
|
|
has_bias=True,
|
|
weight_init='normal',
|
|
bias_init='zeros'):
|
|
super(Net, self).__init__()
|
|
self.conv = nn.Conv2d(cin,
|
|
cout,
|
|
kernel_size,
|
|
stride,
|
|
pad_mode,
|
|
padding,
|
|
dilation,
|
|
group,
|
|
has_bias,
|
|
weight_init,
|
|
bias_init)
|
|
|
|
def construct(self, input_x):
|
|
return self.conv(input_x)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_compile():
|
|
net = Net(3, 64, 3, bias_init='zeros')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_nobias():
|
|
net = Net(3, 64, 4, has_bias=False, weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_nobias2():
|
|
net = Net(3, 64, (3, 5), has_bias=False, weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_pad_same():
|
|
net = Net(3, 64, (3, 5), pad_mode="same", padding=0, has_bias=False, weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_pad_valid():
|
|
net = Net(3, 64, (3, 5), pad_mode="valid", padding=0, has_bias=False, weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_pad_pad():
|
|
net = Net(3, 64, (3, 5), pad_mode="pad", padding=1, has_bias=False, weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_conv_group_error():
|
|
with pytest.raises(ValueError):
|
|
nn.Conv2d(6, 8, 3, group=3)
|
|
with pytest.raises(ValueError):
|
|
nn.Conv2d(6, 9, 3, group=2)
|
|
|
|
|
|
def test_conv_check():
|
|
""" test_conv_check """
|
|
with pytest.raises(ValueError):
|
|
Net(3, 64, 4, pad_mode='sane')
|
|
|
|
with pytest.raises(ValueError):
|
|
Net(3, 0, 4)
|
|
|
|
with pytest.raises(ValueError):
|
|
Net(3, 1, 4, group=-1)
|
|
|
|
with pytest.raises(ValueError):
|
|
Net(3, 1, 4, dilation=-1)
|
|
|
|
with pytest.raises(ValueError):
|
|
Net(3, 1, kernel_size=-1)
|
|
|
|
with pytest.raises(ValueError):
|
|
Net(3, 1, 4, stride=0)
|
|
|
|
with pytest.raises(ValueError):
|
|
Net(0, 1, 4)
|
|
|
|
|
|
class NetConv2dTranspose(nn.Cell):
|
|
def __init__(self,
|
|
cin,
|
|
cout,
|
|
kernel_size,
|
|
stride=1,
|
|
pad_mode="same",
|
|
padding=0,
|
|
dilation=1,
|
|
group=1,
|
|
has_bias=False,
|
|
weight_init='normal',
|
|
bias_init='zeros'):
|
|
super(NetConv2dTranspose, self).__init__()
|
|
self.conv = nn.Conv2dTranspose(cin,
|
|
cout,
|
|
kernel_size,
|
|
stride,
|
|
pad_mode,
|
|
padding,
|
|
dilation,
|
|
group,
|
|
has_bias,
|
|
weight_init,
|
|
bias_init)
|
|
|
|
def construct(self, input_x):
|
|
return self.conv(input_x)
|
|
|
|
|
|
def test_compile_transpose():
|
|
net = NetConv2dTranspose(3, 64, 4, weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_transpose_bias():
|
|
net = NetConv2dTranspose(3, 64, 4, has_bias=True, weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_transpose_bias_init():
|
|
bias = Tensor(np.random.randn(64).astype(np.float32))
|
|
net = NetConv2dTranspose(3, 64, 4, has_bias=True, weight_init='normal', bias_init=bias)
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_transpose_valid():
|
|
net = NetConv2dTranspose(3, 64, 4, pad_mode='valid', weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_transpose_pad():
|
|
net = NetConv2dTranspose(3, 64, 4, pad_mode='pad', weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_transpose_stride2():
|
|
net = NetConv2dTranspose(3, 64, 4, stride=2, weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_transpose_dilation_2():
|
|
net = NetConv2dTranspose(3, 64, 4, stride=2, dilation=2, pad_mode='same', weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|
|
|
|
|
|
def test_compile_transpose_dilation_2_pad_mode_pad():
|
|
net = NetConv2dTranspose(3, 64, 4, stride=2, dilation=2, pad_mode='pad', weight_init='normal')
|
|
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
|
|
net(input_data)
|