mindspore/tests/ut/python/nn/test_conv.py

205 lines
6.3 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test conv """
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor
from ..ut_filter import non_graph_engine
weight = Tensor(np.ones([2, 2]))
in_channels = 3
out_channels = 64
class Net(nn.Cell):
""" Net definition """
def __init__(self,
cin,
cout,
kernel_size,
stride=1,
pad_mode="valid",
padding=0,
dilation=1,
group=1,
has_bias=True,
weight_init='normal',
bias_init='zeros'):
super(Net, self).__init__()
self.conv = nn.Conv2d(cin,
cout,
kernel_size,
stride,
pad_mode,
padding,
dilation,
group,
has_bias,
weight_init,
bias_init)
def construct(self, input_x):
return self.conv(input_x)
@non_graph_engine
def test_compile():
net = Net(3, 64, 3, bias_init='zeros')
input_data = Tensor(np.ones([1, 3, 16, 50], np.float32))
net(input_data)
def test_compile_nobias():
net = Net(3, 64, 4, has_bias=False, weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_compile_nobias2():
net = Net(3, 64, (3, 5), has_bias=False, weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_compile_pad_same():
net = Net(3, 64, (3, 5), pad_mode="same", padding=0, has_bias=False, weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_compile_pad_valid():
net = Net(3, 64, (3, 5), pad_mode="valid", padding=0, has_bias=False, weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_compile_pad_pad():
net = Net(3, 64, (3, 5), pad_mode="pad", padding=1, has_bias=False, weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_conv_group_error():
with pytest.raises(ValueError):
nn.Conv2d(6, 8, 3, group=3)
with pytest.raises(ValueError):
nn.Conv2d(6, 9, 3, group=2)
def test_conv_check():
""" test_conv_check """
with pytest.raises(ValueError):
Net(3, 64, 4, pad_mode='sane')
with pytest.raises(ValueError):
Net(3, 0, 4)
with pytest.raises(ValueError):
Net(3, 1, 4, group=-1)
with pytest.raises(ValueError):
Net(3, 1, 4, dilation=-1)
with pytest.raises(ValueError):
Net(3, 1, kernel_size=-1)
with pytest.raises(ValueError):
Net(3, 1, 4, stride=0)
with pytest.raises(ValueError):
Net(0, 1, 4)
class NetConv2dTranspose(nn.Cell):
def __init__(self,
cin,
cout,
kernel_size,
stride=1,
pad_mode="same",
padding=0,
dilation=1,
group=1,
has_bias=False,
weight_init='normal',
bias_init='zeros'):
super(NetConv2dTranspose, self).__init__()
self.conv = nn.Conv2dTranspose(cin,
cout,
kernel_size,
stride,
pad_mode,
padding,
dilation,
group,
has_bias,
weight_init,
bias_init)
def construct(self, input_x):
return self.conv(input_x)
def test_compile_transpose():
net = NetConv2dTranspose(3, 64, 4, weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_compile_transpose_bias():
net = NetConv2dTranspose(3, 64, 4, has_bias=True, weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_compile_transpose_bias_init():
bias = Tensor(np.random.randn(64).astype(np.float32))
net = NetConv2dTranspose(3, 64, 4, has_bias=True, weight_init='normal', bias_init=bias)
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_compile_transpose_valid():
net = NetConv2dTranspose(3, 64, 4, pad_mode='valid', weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_compile_transpose_pad():
net = NetConv2dTranspose(3, 64, 4, pad_mode='pad', weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_compile_transpose_stride2():
net = NetConv2dTranspose(3, 64, 4, stride=2, weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_compile_transpose_dilation_2():
net = NetConv2dTranspose(3, 64, 4, stride=2, dilation=2, pad_mode='same', weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)
def test_compile_transpose_dilation_2_pad_mode_pad():
net = NetConv2dTranspose(3, 64, 4, stride=2, dilation=2, pad_mode='pad', weight_init='normal')
input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
net(input_data)