forked from mindspore-Ecosystem/mindspore
191 lines
6.5 KiB
Python
191 lines
6.5 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Testing TenCrop in DE
|
|
"""
|
|
import pytest
|
|
import numpy as np
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms.vision.py_transforms as vision
|
|
from mindspore import log as logger
|
|
from util import visualize_list, save_and_check_md5
|
|
|
|
GENERATE_GOLDEN = False
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
|
|
def util_test_ten_crop(crop_size, vertical_flip=False, plot=False):
|
|
"""
|
|
Utility function for testing TenCrop. Input arguments are given by other tests
|
|
"""
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transforms_1 = [
|
|
vision.Decode(),
|
|
vision.ToTensor(),
|
|
]
|
|
transform_1 = vision.ComposeOp(transforms_1)
|
|
data1 = data1.map(input_columns=["image"], operations=transform_1())
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transforms_2 = [
|
|
vision.Decode(),
|
|
vision.TenCrop(crop_size, use_vertical_flip=vertical_flip),
|
|
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
|
]
|
|
transform_2 = vision.ComposeOp(transforms_2)
|
|
data2 = data2.map(input_columns=["image"], operations=transform_2())
|
|
num_iter = 0
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1), data2.create_dict_iterator(num_epochs=1)):
|
|
num_iter += 1
|
|
image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
image_2 = item2["image"]
|
|
|
|
logger.info("shape of image_1: {}".format(image_1.shape))
|
|
logger.info("shape of image_2: {}".format(image_2.shape))
|
|
|
|
logger.info("dtype of image_1: {}".format(image_1.dtype))
|
|
logger.info("dtype of image_2: {}".format(image_2.dtype))
|
|
|
|
if plot:
|
|
visualize_list(np.array([image_1] * 10), (image_2 * 255).astype(np.uint8).transpose(0, 2, 3, 1))
|
|
|
|
# The output data should be of a 4D tensor shape, a stack of 10 images.
|
|
assert len(image_2.shape) == 4
|
|
assert image_2.shape[0] == 10
|
|
|
|
|
|
def test_ten_crop_op_square(plot=False):
|
|
"""
|
|
Tests TenCrop for a square crop
|
|
"""
|
|
|
|
logger.info("test_ten_crop_op_square")
|
|
util_test_ten_crop(200, plot=plot)
|
|
|
|
|
|
def test_ten_crop_op_rectangle(plot=False):
|
|
"""
|
|
Tests TenCrop for a rectangle crop
|
|
"""
|
|
|
|
logger.info("test_ten_crop_op_rectangle")
|
|
util_test_ten_crop((200, 150), plot=plot)
|
|
|
|
|
|
def test_ten_crop_op_vertical_flip(plot=False):
|
|
"""
|
|
Tests TenCrop with vertical flip set to True
|
|
"""
|
|
|
|
logger.info("test_ten_crop_op_vertical_flip")
|
|
util_test_ten_crop(200, vertical_flip=True, plot=plot)
|
|
|
|
|
|
def test_ten_crop_md5():
|
|
"""
|
|
Tests TenCrops for giving the same results in multiple runs.
|
|
Since TenCrop is a deterministic function, we expect it to return the same result for a specific input every time
|
|
"""
|
|
logger.info("test_ten_crop_md5")
|
|
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transforms_2 = [
|
|
vision.Decode(),
|
|
vision.TenCrop((200, 100), use_vertical_flip=True),
|
|
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
|
]
|
|
transform_2 = vision.ComposeOp(transforms_2)
|
|
data2 = data2.map(input_columns=["image"], operations=transform_2())
|
|
# Compare with expected md5 from images
|
|
filename = "ten_crop_01_result.npz"
|
|
save_and_check_md5(data2, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_ten_crop_list_size_error_msg():
|
|
"""
|
|
Tests TenCrop error message when the size arg has more than 2 elements
|
|
"""
|
|
logger.info("test_ten_crop_list_size_error_msg")
|
|
|
|
with pytest.raises(TypeError) as info:
|
|
_ = [
|
|
vision.Decode(),
|
|
vision.TenCrop([200, 200, 200]),
|
|
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
|
]
|
|
error_msg = "Size should be a single integer or a list/tuple (h, w) of length 2."
|
|
assert error_msg == str(info.value)
|
|
|
|
|
|
def test_ten_crop_invalid_size_error_msg():
|
|
"""
|
|
Tests TenCrop error message when the size arg is not positive
|
|
"""
|
|
logger.info("test_ten_crop_invalid_size_error_msg")
|
|
|
|
with pytest.raises(ValueError) as info:
|
|
_ = [
|
|
vision.Decode(),
|
|
vision.TenCrop(0),
|
|
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
|
]
|
|
error_msg = "Input is not within the required interval of (1 to 16777216)."
|
|
assert error_msg == str(info.value)
|
|
|
|
with pytest.raises(ValueError) as info:
|
|
_ = [
|
|
vision.Decode(),
|
|
vision.TenCrop(-10),
|
|
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 10 images
|
|
]
|
|
|
|
assert error_msg == str(info.value)
|
|
|
|
|
|
def test_ten_crop_wrong_img_error_msg():
|
|
"""
|
|
Tests TenCrop error message when the image is not in the correct format.
|
|
"""
|
|
logger.info("test_ten_crop_wrong_img_error_msg")
|
|
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transforms = [
|
|
vision.Decode(),
|
|
vision.TenCrop(200),
|
|
vision.ToTensor()
|
|
]
|
|
transform = vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
|
|
with pytest.raises(RuntimeError) as info:
|
|
data.create_tuple_iterator(num_epochs=1).get_next()
|
|
error_msg = "TypeError: img should be PIL Image or Numpy array. Got <class 'tuple'>"
|
|
|
|
# error msg comes from ToTensor()
|
|
assert error_msg in str(info.value)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_ten_crop_op_square(plot=True)
|
|
test_ten_crop_op_rectangle(plot=True)
|
|
test_ten_crop_op_vertical_flip(plot=True)
|
|
test_ten_crop_md5()
|
|
test_ten_crop_list_size_error_msg()
|
|
test_ten_crop_invalid_size_error_msg()
|
|
test_ten_crop_wrong_img_error_msg()
|