mindspore/tests/ut/python/dataset/test_serdes_dataset.py

269 lines
10 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing dataset serialize and deserialize in DE
"""
import filecmp
import glob
import json
import os
import numpy as np
from test_minddataset_sampler import add_and_remove_cv_file, get_data, CV_DIR_NAME, CV_FILE_NAME
from util import config_get_set_num_parallel_workers
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as c
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
from mindspore.dataset.transforms.vision import Inter
def test_imagefolder(remove_json_files=True):
"""
Test simulating resnet50 dataset pipeline.
"""
data_dir = "../data/dataset/testPK/data"
ds.config.set_seed(1)
# define data augmentation parameters
rescale = 1.0 / 255.0
shift = 0.0
resize_height, resize_width = 224, 224
weights = [1.0, 0.1, 0.02, 0.3, 0.4, 0.05, 1.2, 0.13, 0.14, 0.015, 0.16, 1.1]
# Constructing DE pipeline
sampler = ds.WeightedRandomSampler(weights, 11)
data1 = ds.ImageFolderDatasetV2(data_dir, sampler=sampler)
data1 = data1.repeat(1)
data1 = data1.map(input_columns=["image"], operations=[vision.Decode(True)])
rescale_op = vision.Rescale(rescale, shift)
resize_op = vision.Resize((resize_height, resize_width), Inter.LINEAR)
data1 = data1.map(input_columns=["image"], operations=[rescale_op, resize_op])
data1 = data1.batch(2)
# Serialize the dataset pre-processing pipeline.
# data1 should still work after saving.
ds.serialize(data1, "imagenet_dataset_pipeline.json")
ds1_dict = ds.serialize(data1)
assert validate_jsonfile("imagenet_dataset_pipeline.json") is True
# Print the serialized pipeline to stdout
ds.show(data1)
# Deserialize the serialized json file
data2 = ds.deserialize(json_filepath="imagenet_dataset_pipeline.json")
# Serialize the pipeline we just deserialized.
# The content of the json file should be the same to the previous serialize.
ds.serialize(data2, "imagenet_dataset_pipeline_1.json")
assert validate_jsonfile("imagenet_dataset_pipeline_1.json") is True
assert filecmp.cmp('imagenet_dataset_pipeline.json', 'imagenet_dataset_pipeline_1.json')
# Deserialize the latest json file again
data3 = ds.deserialize(json_filepath="imagenet_dataset_pipeline_1.json")
data4 = ds.deserialize(input_dict=ds1_dict)
num_samples = 0
# Iterate and compare the data in the original pipeline (data1) against the deserialized pipeline (data2)
for item1, item2, item3, item4 in zip(data1.create_dict_iterator(num_epochs=1),
data2.create_dict_iterator(num_epochs=1),
data3.create_dict_iterator(num_epochs=1),
data4.create_dict_iterator(num_epochs=1)):
np.testing.assert_array_equal(item1['image'], item2['image'])
np.testing.assert_array_equal(item1['image'], item3['image'])
np.testing.assert_array_equal(item1['label'], item2['label'])
np.testing.assert_array_equal(item1['label'], item3['label'])
np.testing.assert_array_equal(item3['image'], item4['image'])
np.testing.assert_array_equal(item3['label'], item4['label'])
num_samples += 1
logger.info("Number of data in data1: {}".format(num_samples))
assert num_samples == 6
# Remove the generated json file
if remove_json_files:
delete_json_files()
def test_mnist_dataset(remove_json_files=True):
data_dir = "../data/dataset/testMnistData"
ds.config.set_seed(1)
data1 = ds.MnistDataset(data_dir, 100)
one_hot_encode = c.OneHot(10) # num_classes is input argument
data1 = data1.map(input_columns="label", operations=one_hot_encode)
# batch_size is input argument
data1 = data1.batch(batch_size=10, drop_remainder=True)
ds.serialize(data1, "mnist_dataset_pipeline.json")
assert validate_jsonfile("mnist_dataset_pipeline.json") is True
data2 = ds.deserialize(json_filepath="mnist_dataset_pipeline.json")
ds.serialize(data2, "mnist_dataset_pipeline_1.json")
assert validate_jsonfile("mnist_dataset_pipeline_1.json") is True
assert filecmp.cmp('mnist_dataset_pipeline.json', 'mnist_dataset_pipeline_1.json')
data3 = ds.deserialize(json_filepath="mnist_dataset_pipeline_1.json")
num = 0
for data1, data2, data3 in zip(data1.create_dict_iterator(num_epochs=1), data2.create_dict_iterator(num_epochs=1),
data3.create_dict_iterator(num_epochs=1)):
np.testing.assert_array_equal(data1['image'], data2['image'])
np.testing.assert_array_equal(data1['image'], data3['image'])
np.testing.assert_array_equal(data1['label'], data2['label'])
np.testing.assert_array_equal(data1['label'], data3['label'])
num += 1
logger.info("mnist total num samples is {}".format(str(num)))
assert num == 10
if remove_json_files:
delete_json_files()
def test_zip_dataset(remove_json_files=True):
files = ["../data/dataset/testTFTestAllTypes/test.data"]
schema_file = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
ds.config.set_seed(1)
ds0 = ds.TFRecordDataset(files, schema=schema_file, shuffle=ds.Shuffle.GLOBAL)
data1 = ds.TFRecordDataset(files, schema=schema_file, shuffle=ds.Shuffle.GLOBAL)
data2 = ds.TFRecordDataset(files, schema=schema_file, shuffle=ds.Shuffle.FILES)
data2 = data2.shuffle(10000)
data2 = data2.rename(input_columns=["col_sint16", "col_sint32", "col_sint64", "col_float",
"col_1d", "col_2d", "col_3d", "col_binary"],
output_columns=["column_sint16", "column_sint32", "column_sint64", "column_float",
"column_1d", "column_2d", "column_3d", "column_binary"])
data3 = ds.zip((data1, data2))
ds.serialize(data3, "zip_dataset_pipeline.json")
assert validate_jsonfile("zip_dataset_pipeline.json") is True
assert validate_jsonfile("zip_dataset_pipeline_typo.json") is False
data4 = ds.deserialize(json_filepath="zip_dataset_pipeline.json")
ds.serialize(data4, "zip_dataset_pipeline_1.json")
assert validate_jsonfile("zip_dataset_pipeline_1.json") is True
assert filecmp.cmp('zip_dataset_pipeline.json', 'zip_dataset_pipeline_1.json')
rows = 0
for d0, d3, d4 in zip(ds0, data3, data4):
num_cols = len(d0)
offset = 0
for t1 in d0:
np.testing.assert_array_equal(t1, d3[offset])
np.testing.assert_array_equal(t1, d3[offset + num_cols])
np.testing.assert_array_equal(t1, d4[offset])
np.testing.assert_array_equal(t1, d4[offset + num_cols])
offset += 1
rows += 1
assert rows == 12
if remove_json_files:
delete_json_files()
def test_random_crop():
logger.info("test_random_crop")
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
decode_op = vision.Decode()
random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200])
data1 = data1.map(input_columns="image", operations=decode_op)
data1 = data1.map(input_columns="image", operations=random_crop_op)
# Serializing into python dictionary
ds1_dict = ds.serialize(data1)
# Serializing into json object
_ = json.dumps(ds1_dict, indent=2)
# Reconstruct dataset pipeline from its serialized form
data1_1 = ds.deserialize(input_dict=ds1_dict)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
data2 = data2.map(input_columns="image", operations=decode_op)
for item1, item1_1, item2 in zip(data1.create_dict_iterator(num_epochs=1),
data1_1.create_dict_iterator(num_epochs=1),
data2.create_dict_iterator(num_epochs=1)):
np.testing.assert_array_equal(item1['image'], item1_1['image'])
_ = item2["image"]
# Restore configuration num_parallel_workers
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def validate_jsonfile(filepath):
try:
file_exist = os.path.exists(filepath)
with open(filepath, 'r') as jfile:
loaded_json = json.load(jfile)
except IOError:
return False
return file_exist and isinstance(loaded_json, dict)
def delete_json_files():
file_list = glob.glob('*.json')
for f in file_list:
try:
os.remove(f)
except IOError:
logger.info("Error while deleting: {}".format(f))
# Test save load minddataset
def test_minddataset(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 3, 5, 7]
sampler = ds.SubsetRandomSampler(indices)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
# Serializing into python dictionary
ds1_dict = ds.serialize(data_set)
# Serializing into json object
ds1_json = json.dumps(ds1_dict, sort_keys=True)
# Reconstruct dataset pipeline from its serialized form
data_set = ds.deserialize(input_dict=ds1_dict)
ds2_dict = ds.serialize(data_set)
# Serializing into json object
ds2_json = json.dumps(ds2_dict, sort_keys=True)
assert ds1_json == ds2_json
_ = get_data(CV_DIR_NAME)
assert data_set.get_dataset_size() == 5
num_iter = 0
for _ in data_set.create_dict_iterator(num_epochs=1):
num_iter += 1
assert num_iter == 5
if __name__ == '__main__':
test_imagefolder()
test_zip_dataset()
test_mnist_dataset()
test_random_crop()