mindspore/tests/ut/python/dataset/test_minddataset_padded.py

684 lines
31 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
This is the test module for mindrecord
"""
import collections
import os
import re
import string
import numpy as np
import pytest
import mindspore.dataset as ds
from mindspore import log as logger
from mindspore.mindrecord import FileWriter
FILES_NUM = 4
CV_FILE_NAME = "../data/mindrecord/imagenet.mindrecord"
CV1_FILE_NAME = "../data/mindrecord/imagenet1.mindrecord"
CV2_FILE_NAME = "../data/mindrecord/imagenet2.mindrecord"
CV_DIR_NAME = "../data/mindrecord/testImageNetData"
NLP_FILE_NAME = "../data/mindrecord/aclImdb.mindrecord"
NLP_FILE_POS = "../data/mindrecord/testAclImdbData/pos"
NLP_FILE_VOCAB = "../data/mindrecord/testAclImdbData/vocab.txt"
@pytest.fixture
def add_and_remove_cv_file():
"""add/remove cv file"""
paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
for x in range(FILES_NUM)]
try:
for x in paths:
os.remove("{}".format(x)) if os.path.exists("{}".format(x)) else None
os.remove("{}.db".format(x)) if os.path.exists(
"{}.db".format(x)) else None
writer = FileWriter(CV_FILE_NAME, FILES_NUM)
data = get_data(CV_DIR_NAME)
cv_schema_json = {"id": {"type": "int32"},
"file_name": {"type": "string"},
"label": {"type": "int32"},
"data": {"type": "bytes"}}
writer.add_schema(cv_schema_json, "img_schema")
writer.add_index(["file_name", "label"])
writer.write_raw_data(data)
writer.commit()
yield "yield_cv_data"
except Exception as error:
for x in paths:
os.remove("{}".format(x))
os.remove("{}.db".format(x))
raise error
else:
for x in paths:
os.remove("{}".format(x))
os.remove("{}.db".format(x))
@pytest.fixture
def add_and_remove_nlp_file():
"""add/remove nlp file"""
paths = ["{}{}".format(NLP_FILE_NAME, str(x).rjust(1, '0'))
for x in range(FILES_NUM)]
try:
for x in paths:
if os.path.exists("{}".format(x)):
os.remove("{}".format(x))
if os.path.exists("{}.db".format(x)):
os.remove("{}.db".format(x))
writer = FileWriter(NLP_FILE_NAME, FILES_NUM)
data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
nlp_schema_json = {"id": {"type": "string"}, "label": {"type": "int32"},
"rating": {"type": "float32"},
"input_ids": {"type": "int64",
"shape": [-1]},
"input_mask": {"type": "int64",
"shape": [1, -1]},
"segment_ids": {"type": "int64",
"shape": [2, -1]}
}
writer.set_header_size(1 << 14)
writer.set_page_size(1 << 15)
writer.add_schema(nlp_schema_json, "nlp_schema")
writer.add_index(["id", "rating"])
writer.write_raw_data(data)
writer.commit()
yield "yield_nlp_data"
except Exception as error:
for x in paths:
os.remove("{}".format(x))
os.remove("{}.db".format(x))
raise error
else:
for x in paths:
os.remove("{}".format(x))
os.remove("{}.db".format(x))
def test_cv_minddataset_reader_basic_padded_samples(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["label", "file_name", "data"]
data = get_data(CV_DIR_NAME)
padded_sample = data[0]
padded_sample['label'] = -1
padded_sample['file_name'] = 'dummy.jpg'
num_readers = 4
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, padded_sample=padded_sample, num_padded=5)
assert data_set.get_dataset_size() == 15
num_iter = 0
num_padded_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
if item['label'] == -1:
num_padded_iter += 1
assert item['file_name'] == bytes(padded_sample['file_name'],
encoding='utf8')
assert item['label'] == padded_sample['label']
assert (item['data'] == np.array(list(padded_sample['data']))).all()
num_iter += 1
assert num_padded_iter == 5
assert num_iter == 15
def test_cv_minddataset_partition_padded_samples(add_and_remove_cv_file):
"""tutorial for cv minddataset."""
columns_list = ["data", "file_name", "label"]
data = get_data(CV_DIR_NAME)
padded_sample = data[0]
padded_sample['label'] = -2
padded_sample['file_name'] = 'dummy.jpg'
num_readers = 4
def partitions(num_shards, num_padded, dataset_size):
num_padded_iter = 0
num_iter = 0
for partition_id in range(num_shards):
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
num_shards=num_shards,
shard_id=partition_id,
padded_sample=padded_sample,
num_padded=num_padded)
assert data_set.get_dataset_size() == dataset_size
for item in data_set.create_dict_iterator(num_epochs=1):
logger.info("-------------- partition : {} ------------------------".format(partition_id))
logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info("-------------- item[label]: {} -----------------------".format(item["label"]))
if item['label'] == -2:
num_padded_iter += 1
assert item['file_name'] == bytes(padded_sample['file_name'], encoding='utf8')
assert item['label'] == padded_sample['label']
assert (item['data'] == np.array(list(padded_sample['data']))).all()
num_iter += 1
assert num_padded_iter == num_padded
return num_iter == dataset_size * num_shards
partitions(4, 2, 3)
partitions(5, 5, 3)
partitions(9, 8, 2)
def test_cv_minddataset_partition_padded_samples_multi_epoch(add_and_remove_cv_file):
"""tutorial for cv minddataset."""
columns_list = ["data", "file_name", "label"]
data = get_data(CV_DIR_NAME)
padded_sample = data[0]
padded_sample['label'] = -2
padded_sample['file_name'] = 'dummy.jpg'
num_readers = 4
def partitions(num_shards, num_padded, dataset_size):
repeat_size = 5
num_padded_iter = 0
num_iter = 0
for partition_id in range(num_shards):
epoch1_shuffle_result = []
epoch2_shuffle_result = []
epoch3_shuffle_result = []
epoch4_shuffle_result = []
epoch5_shuffle_result = []
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
num_shards=num_shards,
shard_id=partition_id,
padded_sample=padded_sample,
num_padded=num_padded)
assert data_set.get_dataset_size() == dataset_size
data_set = data_set.repeat(repeat_size)
local_index = 0
for item in data_set.create_dict_iterator(num_epochs=1):
logger.info("-------------- partition : {} ------------------------".format(partition_id))
logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info("-------------- item[label]: {} -----------------------".format(item["label"]))
if item['label'] == -2:
num_padded_iter += 1
assert item['file_name'] == bytes(padded_sample['file_name'], encoding='utf8')
assert item['label'] == padded_sample['label']
assert (item['data'] == np.array(list(padded_sample['data']))).all()
if local_index < dataset_size:
epoch1_shuffle_result.append(item["file_name"])
elif local_index < dataset_size * 2:
epoch2_shuffle_result.append(item["file_name"])
elif local_index < dataset_size * 3:
epoch3_shuffle_result.append(item["file_name"])
elif local_index < dataset_size * 4:
epoch4_shuffle_result.append(item["file_name"])
elif local_index < dataset_size * 5:
epoch5_shuffle_result.append(item["file_name"])
local_index += 1
num_iter += 1
assert len(epoch1_shuffle_result) == dataset_size
assert len(epoch2_shuffle_result) == dataset_size
assert len(epoch3_shuffle_result) == dataset_size
assert len(epoch4_shuffle_result) == dataset_size
assert len(epoch5_shuffle_result) == dataset_size
assert local_index == dataset_size * repeat_size
# When dataset_size is equal to 2, too high probability is the same result after shuffle operation
if dataset_size > 2:
assert epoch1_shuffle_result != epoch2_shuffle_result
assert epoch2_shuffle_result != epoch3_shuffle_result
assert epoch3_shuffle_result != epoch4_shuffle_result
assert epoch4_shuffle_result != epoch5_shuffle_result
assert num_padded_iter == num_padded * repeat_size
assert num_iter == dataset_size * num_shards * repeat_size
partitions(4, 2, 3)
partitions(5, 5, 3)
partitions(9, 8, 2)
def test_cv_minddataset_partition_padded_samples_no_dividsible(add_and_remove_cv_file):
"""tutorial for cv minddataset."""
columns_list = ["data", "file_name", "label"]
data = get_data(CV_DIR_NAME)
padded_sample = data[0]
padded_sample['label'] = -2
padded_sample['file_name'] = 'dummy.jpg'
num_readers = 4
def partitions(num_shards, num_padded):
for partition_id in range(num_shards):
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
num_shards=num_shards,
shard_id=partition_id,
padded_sample=padded_sample,
num_padded=num_padded)
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
num_iter += 1
return num_iter
with pytest.raises(RuntimeError):
partitions(4, 1)
def test_cv_minddataset_partition_padded_samples_dataset_size_no_divisible(add_and_remove_cv_file):
columns_list = ["data", "file_name", "label"]
data = get_data(CV_DIR_NAME)
padded_sample = data[0]
padded_sample['label'] = -2
padded_sample['file_name'] = 'dummy.jpg'
num_readers = 4
def partitions(num_shards, num_padded):
for partition_id in range(num_shards):
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
num_shards=num_shards,
shard_id=partition_id,
padded_sample=padded_sample,
num_padded=num_padded)
with pytest.raises(RuntimeError):
data_set.get_dataset_size() == 3
partitions(4, 1)
def test_cv_minddataset_partition_padded_samples_no_equal_column_list(add_and_remove_cv_file):
columns_list = ["data", "file_name", "label"]
data = get_data(CV_DIR_NAME)
padded_sample = data[0]
padded_sample.pop('label', None)
padded_sample['file_name'] = 'dummy.jpg'
num_readers = 4
def partitions(num_shards, num_padded):
for partition_id in range(num_shards):
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
num_shards=num_shards,
shard_id=partition_id,
padded_sample=padded_sample,
num_padded=num_padded)
for item in data_set.create_dict_iterator(num_epochs=1):
logger.info("-------------- partition : {} ------------------------".format(partition_id))
logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
with pytest.raises(Exception, match="padded_sample cannot match columns_list."):
partitions(4, 2)
def test_cv_minddataset_partition_padded_samples_no_column_list(add_and_remove_cv_file):
data = get_data(CV_DIR_NAME)
padded_sample = data[0]
padded_sample['label'] = -2
padded_sample['file_name'] = 'dummy.jpg'
num_readers = 4
def partitions(num_shards, num_padded):
for partition_id in range(num_shards):
data_set = ds.MindDataset(CV_FILE_NAME + "0", None, num_readers,
num_shards=num_shards,
shard_id=partition_id,
padded_sample=padded_sample,
num_padded=num_padded)
for item in data_set.create_dict_iterator(num_epochs=1):
logger.info("-------------- partition : {} ------------------------".format(partition_id))
logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
with pytest.raises(Exception, match="padded_sample is specified and requires columns_list as well."):
partitions(4, 2)
def test_cv_minddataset_partition_padded_samples_no_num_padded(add_and_remove_cv_file):
columns_list = ["data", "file_name", "label"]
data = get_data(CV_DIR_NAME)
padded_sample = data[0]
padded_sample['file_name'] = 'dummy.jpg'
num_readers = 4
def partitions(num_shards, num_padded):
for partition_id in range(num_shards):
data_set = ds.MindDataset(CV_FILE_NAME + "0", None, num_readers,
num_shards=num_shards,
shard_id=partition_id,
padded_sample=padded_sample)
for item in data_set.create_dict_iterator(num_epochs=1):
logger.info("-------------- partition : {} ------------------------".format(partition_id))
logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
with pytest.raises(Exception, match="padded_sample is specified and requires num_padded as well."):
partitions(4, 2)
def test_cv_minddataset_partition_padded_samples_no_padded_samples(add_and_remove_cv_file):
columns_list = ["data", "file_name", "label"]
data = get_data(CV_DIR_NAME)
padded_sample = data[0]
padded_sample['file_name'] = 'dummy.jpg'
num_readers = 4
def partitions(num_shards, num_padded):
for partition_id in range(num_shards):
data_set = ds.MindDataset(CV_FILE_NAME + "0", None, num_readers,
num_shards=num_shards,
shard_id=partition_id,
num_padded=num_padded)
for item in data_set.create_dict_iterator(num_epochs=1):
logger.info("-------------- partition : {} ------------------------".format(partition_id))
logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
with pytest.raises(Exception, match="num_padded is specified but padded_sample is not."):
partitions(4, 2)
def test_nlp_minddataset_reader_basic_padded_samples(add_and_remove_nlp_file):
columns_list = ["input_ids", "id", "rating"]
data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
padded_sample = data[0]
padded_sample['id'] = "-1"
padded_sample['input_ids'] = np.array([-1, -1, -1, -1], dtype=np.int64)
padded_sample['rating'] = 1.0
num_readers = 4
def partitions(num_shards, num_padded, dataset_size):
num_padded_iter = 0
num_iter = 0
for partition_id in range(num_shards):
data_set = ds.MindDataset(NLP_FILE_NAME + "0", columns_list, num_readers,
num_shards=num_shards,
shard_id=partition_id,
padded_sample=padded_sample,
num_padded=num_padded)
assert data_set.get_dataset_size() == dataset_size
for item in data_set.create_dict_iterator(num_epochs=1):
logger.info("-------------- item[id]: {} ------------------------".format(item["id"]))
logger.info("-------------- item[rating]: {} --------------------".format(item["rating"]))
logger.info("-------------- item[input_ids]: {}, shape: {} -----------------".format(
item["input_ids"],
item["input_ids"].shape))
if item['id'] == bytes('-1', encoding='utf-8'):
num_padded_iter += 1
assert item['id'] == bytes(padded_sample['id'], encoding='utf-8')
assert (item['input_ids'] == padded_sample['input_ids']).all()
assert (item['rating'] == padded_sample['rating']).all()
num_iter += 1
assert num_padded_iter == num_padded
assert num_iter == dataset_size * num_shards
partitions(4, 6, 4)
partitions(5, 5, 3)
partitions(9, 8, 2)
def test_nlp_minddataset_reader_basic_padded_samples_multi_epoch(add_and_remove_nlp_file):
columns_list = ["input_ids", "id", "rating"]
data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
padded_sample = data[0]
padded_sample['id'] = "-1"
padded_sample['input_ids'] = np.array([-1, -1, -1, -1], dtype=np.int64)
padded_sample['rating'] = 1.0
num_readers = 4
repeat_size = 3
def partitions(num_shards, num_padded, dataset_size):
num_padded_iter = 0
num_iter = 0
for partition_id in range(num_shards):
epoch1_shuffle_result = []
epoch2_shuffle_result = []
epoch3_shuffle_result = []
data_set = ds.MindDataset(NLP_FILE_NAME + "0", columns_list, num_readers,
num_shards=num_shards,
shard_id=partition_id,
padded_sample=padded_sample,
num_padded=num_padded)
assert data_set.get_dataset_size() == dataset_size
data_set = data_set.repeat(repeat_size)
local_index = 0
for item in data_set.create_dict_iterator(num_epochs=1):
logger.info("-------------- item[id]: {} ------------------------".format(item["id"]))
logger.info("-------------- item[rating]: {} --------------------".format(item["rating"]))
logger.info("-------------- item[input_ids]: {}, shape: {} -----------------".format(
item["input_ids"],
item["input_ids"].shape))
if item['id'] == bytes('-1', encoding='utf-8'):
num_padded_iter += 1
assert item['id'] == bytes(padded_sample['id'], encoding='utf-8')
assert (item['input_ids'] == padded_sample['input_ids']).all()
assert (item['rating'] == padded_sample['rating']).all()
if local_index < dataset_size:
epoch1_shuffle_result.append(item['id'])
elif local_index < dataset_size * 2:
epoch2_shuffle_result.append(item['id'])
elif local_index < dataset_size * 3:
epoch3_shuffle_result.append(item['id'])
local_index += 1
num_iter += 1
assert len(epoch1_shuffle_result) == dataset_size
assert len(epoch2_shuffle_result) == dataset_size
assert len(epoch3_shuffle_result) == dataset_size
assert local_index == dataset_size * repeat_size
# When dataset_size is equal to 2, too high probability is the same result after shuffle operation
if dataset_size > 2:
assert epoch1_shuffle_result != epoch2_shuffle_result
assert epoch2_shuffle_result != epoch3_shuffle_result
assert num_padded_iter == num_padded * repeat_size
assert num_iter == dataset_size * num_shards * repeat_size
partitions(4, 6, 4)
partitions(5, 5, 3)
partitions(9, 8, 2)
def test_nlp_minddataset_reader_basic_padded_samples_check_whole_reshuffle_result_per_epoch(add_and_remove_nlp_file):
columns_list = ["input_ids", "id", "rating"]
padded_sample = {}
padded_sample['id'] = "-1"
padded_sample['input_ids'] = np.array([-1, -1, -1, -1], dtype=np.int64)
padded_sample['rating'] = 1.0
num_readers = 4
repeat_size = 3
def partitions(num_shards, num_padded, dataset_size):
num_padded_iter = 0
num_iter = 0
epoch_result = [[["" for i in range(dataset_size)] for i in range(repeat_size)] for i in range(num_shards)]
for partition_id in range(num_shards):
data_set = ds.MindDataset(NLP_FILE_NAME + "0", columns_list, num_readers,
num_shards=num_shards,
shard_id=partition_id,
padded_sample=padded_sample,
num_padded=num_padded)
assert data_set.get_dataset_size() == dataset_size
data_set = data_set.repeat(repeat_size)
inner_num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
logger.info("-------------- item[id]: {} ------------------------".format(item["id"]))
logger.info("-------------- item[rating]: {} --------------------".format(item["rating"]))
logger.info("-------------- item[input_ids]: {}, shape: {} -----------------"
.format(item["input_ids"], item["input_ids"].shape))
if item['id'] == bytes('-1', encoding='utf-8'):
num_padded_iter += 1
assert item['id'] == bytes(padded_sample['id'], encoding='utf-8')
assert (item['input_ids'] == padded_sample['input_ids']).all()
assert (item['rating'] == padded_sample['rating']).all()
# save epoch result
epoch_result[partition_id][int(inner_num_iter / dataset_size)][inner_num_iter % dataset_size] = item[
"id"]
num_iter += 1
inner_num_iter += 1
assert epoch_result[partition_id][0] not in (epoch_result[partition_id][1], epoch_result[partition_id][2])
assert epoch_result[partition_id][1] not in (epoch_result[partition_id][0], epoch_result[partition_id][2])
assert epoch_result[partition_id][2] not in (epoch_result[partition_id][1], epoch_result[partition_id][0])
if dataset_size > 2:
epoch_result[partition_id][0].sort()
epoch_result[partition_id][1].sort()
epoch_result[partition_id][2].sort()
assert epoch_result[partition_id][0] != epoch_result[partition_id][1]
assert epoch_result[partition_id][1] != epoch_result[partition_id][2]
assert epoch_result[partition_id][2] != epoch_result[partition_id][0]
assert num_padded_iter == num_padded * repeat_size
assert num_iter == dataset_size * num_shards * repeat_size
partitions(4, 6, 4)
partitions(5, 5, 3)
partitions(9, 8, 2)
def get_data(dir_name):
"""
usage: get data from imagenet dataset
params:
dir_name: directory containing folder images and annotation information
"""
if not os.path.isdir(dir_name):
raise IOError("Directory {} not exists".format(dir_name))
img_dir = os.path.join(dir_name, "images")
ann_file = os.path.join(dir_name, "annotation.txt")
with open(ann_file, "r") as file_reader:
lines = file_reader.readlines()
data_list = []
for i, line in enumerate(lines):
try:
filename, label = line.split(",")
label = label.strip("\n")
with open(os.path.join(img_dir, filename), "rb") as file_reader:
img = file_reader.read()
data_json = {"id": i,
"file_name": filename,
"data": img,
"label": int(label)}
data_list.append(data_json)
except FileNotFoundError:
continue
return data_list
def get_nlp_data(dir_name, vocab_file, num):
"""
Return raw data of aclImdb dataset.
Args:
dir_name (str): String of aclImdb dataset's path.
vocab_file (str): String of dictionary's path.
num (int): Number of sample.
Returns:
List
"""
if not os.path.isdir(dir_name):
raise IOError("Directory {} not exists".format(dir_name))
for root, dirs, files in os.walk(dir_name):
for index, file_name_extension in enumerate(files):
if index < num:
file_path = os.path.join(root, file_name_extension)
file_name, _ = file_name_extension.split('.', 1)
id_, rating = file_name.split('_', 1)
with open(file_path, 'r') as f:
raw_content = f.read()
dictionary = load_vocab(vocab_file)
vectors = [dictionary.get('[CLS]')]
vectors += [dictionary.get(i) if i in dictionary
else dictionary.get('[UNK]')
for i in re.findall(r"[\w']+|[{}]"
.format(string.punctuation),
raw_content)]
vectors += [dictionary.get('[SEP]')]
input_, mask, segment = inputs(vectors)
input_ids = np.reshape(np.array(input_), [-1])
input_mask = np.reshape(np.array(mask), [1, -1])
segment_ids = np.reshape(np.array(segment), [2, -1])
data = {
"label": 1,
"id": id_,
"rating": float(rating),
"input_ids": input_ids,
"input_mask": input_mask,
"segment_ids": segment_ids
}
yield data
def convert_to_uni(text):
if isinstance(text, str):
return text
if isinstance(text, bytes):
return text.decode('utf-8', 'ignore')
raise Exception("The type %s does not convert!" % type(text))
def load_vocab(vocab_file):
"""load vocabulary to translate statement."""
vocab = collections.OrderedDict()
vocab.setdefault('blank', 2)
index = 0
with open(vocab_file) as reader:
while True:
tmp = reader.readline()
if not tmp:
break
token = convert_to_uni(tmp)
token = token.strip()
vocab[token] = index
index += 1
return vocab
def inputs(vectors, maxlen=50):
length = len(vectors)
if length > maxlen:
return vectors[0:maxlen], [1] * maxlen, [0] * maxlen
input_ = vectors + [0] * (maxlen - length)
mask = [1] * length + [0] * (maxlen - length)
segment = [0] * maxlen
return input_, mask, segment
if __name__ == '__main__':
test_cv_minddataset_reader_basic_padded_samples(add_and_remove_cv_file)
test_cv_minddataset_partition_padded_samples(add_and_remove_cv_file)
test_cv_minddataset_partition_padded_samples_multi_epoch(add_and_remove_cv_file)
test_cv_minddataset_partition_padded_samples_no_dividsible(add_and_remove_cv_file)
test_cv_minddataset_partition_padded_samples_dataset_size_no_divisible(add_and_remove_cv_file)
test_cv_minddataset_partition_padded_samples_no_equal_column_list(add_and_remove_cv_file)
test_cv_minddataset_partition_padded_samples_no_column_list(add_and_remove_cv_file)
test_cv_minddataset_partition_padded_samples_no_num_padded(add_and_remove_cv_file)
test_cv_minddataset_partition_padded_samples_no_padded_samples(add_and_remove_cv_file)
test_nlp_minddataset_reader_basic_padded_samples(add_and_remove_nlp_file)
test_nlp_minddataset_reader_basic_padded_samples_multi_epoch(add_and_remove_nlp_file)
test_nlp_minddataset_reader_basic_padded_samples_check_whole_reshuffle_result_per_epoch(add_and_remove_nlp_file)