mindspore/tests/ut/python/dataset/test_linear_transformation.py

232 lines
8.1 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing LinearTransformation op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import diff_mse, visualize_list, save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_linear_transformation_op(plot=False):
"""
Test LinearTransformation op: verify if images transform correctly
"""
logger.info("test_linear_transformation_01")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
transformation_matrix = np.eye(dim)
mean_vector = np.zeros(dim)
# Define operations
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(input_columns=["image"], operations=transform())
# Note: if transformation matrix is diagonal matrix with all 1 in diagonal,
# the output matrix in expected to be the same as the input matrix.
data1 = data1.map(input_columns=["image"],
operations=py_vision.LinearTransformation(transformation_matrix, mean_vector))
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform())
image_transformed = []
image = []
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1), data2.create_dict_iterator(num_epochs=1)):
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_transformed.append(image1)
image.append(image2)
mse = diff_mse(image1, image2)
assert mse == 0
if plot:
visualize_list(image, image_transformed)
def test_linear_transformation_md5():
"""
Test LinearTransformation op: valid params (transformation_matrix, mean_vector)
Expected to pass
"""
logger.info("test_linear_transformation_md5")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
transformation_matrix = np.ones([dim, dim])
mean_vector = np.zeros(dim)
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor(),
py_vision.LinearTransformation(transformation_matrix, mean_vector)
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename = "linear_transformation_01_result.npz"
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
def test_linear_transformation_exception_01():
"""
Test LinearTransformation op: transformation_matrix is not provided
Expected to raise ValueError
"""
logger.info("test_linear_transformation_exception_01")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
mean_vector = np.zeros(dim)
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
try:
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor(),
py_vision.LinearTransformation(None, mean_vector)
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
except TypeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Argument transformation_matrix with value None is not of type (<class 'numpy.ndarray'>,)" in str(e)
def test_linear_transformation_exception_02():
"""
Test LinearTransformation op: mean_vector is not provided
Expected to raise ValueError
"""
logger.info("test_linear_transformation_exception_02")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
transformation_matrix = np.ones([dim, dim])
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
try:
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor(),
py_vision.LinearTransformation(transformation_matrix, None)
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
except TypeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Argument mean_vector with value None is not of type (<class 'numpy.ndarray'>,)" in str(e)
def test_linear_transformation_exception_03():
"""
Test LinearTransformation op: transformation_matrix is not a square matrix
Expected to raise ValueError
"""
logger.info("test_linear_transformation_exception_03")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
transformation_matrix = np.ones([dim, dim - 1])
mean_vector = np.zeros(dim)
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
try:
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor(),
py_vision.LinearTransformation(transformation_matrix, mean_vector)
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "square matrix" in str(e)
def test_linear_transformation_exception_04():
"""
Test LinearTransformation op: mean_vector does not match dimension of transformation_matrix
Expected to raise ValueError
"""
logger.info("test_linear_transformation_exception_04")
# Initialize parameters
height = 50
weight = 50
dim = 3 * height * weight
transformation_matrix = np.ones([dim, dim])
mean_vector = np.zeros(dim - 1)
# Generate dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
try:
transforms = [
py_vision.Decode(),
py_vision.CenterCrop([height, weight]),
py_vision.ToTensor(),
py_vision.LinearTransformation(transformation_matrix, mean_vector)
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "should match" in str(e)
if __name__ == '__main__':
test_linear_transformation_op(plot=True)
test_linear_transformation_md5()
test_linear_transformation_exception_01()
test_linear_transformation_exception_02()
test_linear_transformation_exception_03()
test_linear_transformation_exception_04()