forked from mindspore-Ecosystem/mindspore
232 lines
8.1 KiB
Python
232 lines
8.1 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing LinearTransformation op in DE
|
|
"""
|
|
import numpy as np
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
|
from mindspore import log as logger
|
|
from util import diff_mse, visualize_list, save_and_check_md5
|
|
|
|
GENERATE_GOLDEN = False
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
|
|
def test_linear_transformation_op(plot=False):
|
|
"""
|
|
Test LinearTransformation op: verify if images transform correctly
|
|
"""
|
|
logger.info("test_linear_transformation_01")
|
|
|
|
# Initialize parameters
|
|
height = 50
|
|
weight = 50
|
|
dim = 3 * height * weight
|
|
transformation_matrix = np.eye(dim)
|
|
mean_vector = np.zeros(dim)
|
|
|
|
# Define operations
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.CenterCrop([height, weight]),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data1 = data1.map(input_columns=["image"], operations=transform())
|
|
# Note: if transformation matrix is diagonal matrix with all 1 in diagonal,
|
|
# the output matrix in expected to be the same as the input matrix.
|
|
data1 = data1.map(input_columns=["image"],
|
|
operations=py_vision.LinearTransformation(transformation_matrix, mean_vector))
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data2 = data2.map(input_columns=["image"], operations=transform())
|
|
|
|
image_transformed = []
|
|
image = []
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1), data2.create_dict_iterator(num_epochs=1)):
|
|
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
image_transformed.append(image1)
|
|
image.append(image2)
|
|
|
|
mse = diff_mse(image1, image2)
|
|
assert mse == 0
|
|
if plot:
|
|
visualize_list(image, image_transformed)
|
|
|
|
|
|
def test_linear_transformation_md5():
|
|
"""
|
|
Test LinearTransformation op: valid params (transformation_matrix, mean_vector)
|
|
Expected to pass
|
|
"""
|
|
logger.info("test_linear_transformation_md5")
|
|
|
|
# Initialize parameters
|
|
height = 50
|
|
weight = 50
|
|
dim = 3 * height * weight
|
|
transformation_matrix = np.ones([dim, dim])
|
|
mean_vector = np.zeros(dim)
|
|
|
|
# Generate dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.CenterCrop([height, weight]),
|
|
py_vision.ToTensor(),
|
|
py_vision.LinearTransformation(transformation_matrix, mean_vector)
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data1 = data1.map(input_columns=["image"], operations=transform())
|
|
|
|
# Compare with expected md5 from images
|
|
filename = "linear_transformation_01_result.npz"
|
|
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_linear_transformation_exception_01():
|
|
"""
|
|
Test LinearTransformation op: transformation_matrix is not provided
|
|
Expected to raise ValueError
|
|
"""
|
|
logger.info("test_linear_transformation_exception_01")
|
|
|
|
# Initialize parameters
|
|
height = 50
|
|
weight = 50
|
|
dim = 3 * height * weight
|
|
mean_vector = np.zeros(dim)
|
|
|
|
# Generate dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
try:
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.CenterCrop([height, weight]),
|
|
py_vision.ToTensor(),
|
|
py_vision.LinearTransformation(None, mean_vector)
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data1 = data1.map(input_columns=["image"], operations=transform())
|
|
except TypeError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "Argument transformation_matrix with value None is not of type (<class 'numpy.ndarray'>,)" in str(e)
|
|
|
|
|
|
def test_linear_transformation_exception_02():
|
|
"""
|
|
Test LinearTransformation op: mean_vector is not provided
|
|
Expected to raise ValueError
|
|
"""
|
|
logger.info("test_linear_transformation_exception_02")
|
|
|
|
# Initialize parameters
|
|
height = 50
|
|
weight = 50
|
|
dim = 3 * height * weight
|
|
transformation_matrix = np.ones([dim, dim])
|
|
|
|
# Generate dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
try:
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.CenterCrop([height, weight]),
|
|
py_vision.ToTensor(),
|
|
py_vision.LinearTransformation(transformation_matrix, None)
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data1 = data1.map(input_columns=["image"], operations=transform())
|
|
except TypeError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "Argument mean_vector with value None is not of type (<class 'numpy.ndarray'>,)" in str(e)
|
|
|
|
|
|
def test_linear_transformation_exception_03():
|
|
"""
|
|
Test LinearTransformation op: transformation_matrix is not a square matrix
|
|
Expected to raise ValueError
|
|
"""
|
|
logger.info("test_linear_transformation_exception_03")
|
|
|
|
# Initialize parameters
|
|
height = 50
|
|
weight = 50
|
|
dim = 3 * height * weight
|
|
transformation_matrix = np.ones([dim, dim - 1])
|
|
mean_vector = np.zeros(dim)
|
|
|
|
# Generate dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
try:
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.CenterCrop([height, weight]),
|
|
py_vision.ToTensor(),
|
|
py_vision.LinearTransformation(transformation_matrix, mean_vector)
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data1 = data1.map(input_columns=["image"], operations=transform())
|
|
except ValueError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "square matrix" in str(e)
|
|
|
|
|
|
def test_linear_transformation_exception_04():
|
|
"""
|
|
Test LinearTransformation op: mean_vector does not match dimension of transformation_matrix
|
|
Expected to raise ValueError
|
|
"""
|
|
logger.info("test_linear_transformation_exception_04")
|
|
|
|
# Initialize parameters
|
|
height = 50
|
|
weight = 50
|
|
dim = 3 * height * weight
|
|
transformation_matrix = np.ones([dim, dim])
|
|
mean_vector = np.zeros(dim - 1)
|
|
|
|
# Generate dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
try:
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.CenterCrop([height, weight]),
|
|
py_vision.ToTensor(),
|
|
py_vision.LinearTransformation(transformation_matrix, mean_vector)
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data1 = data1.map(input_columns=["image"], operations=transform())
|
|
except ValueError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "should match" in str(e)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_linear_transformation_op(plot=True)
|
|
test_linear_transformation_md5()
|
|
test_linear_transformation_exception_01()
|
|
test_linear_transformation_exception_02()
|
|
test_linear_transformation_exception_03()
|
|
test_linear_transformation_exception_04()
|