mindspore/tests/ut/python/dataset/test_invert.py

266 lines
8.4 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing Invert op in DE
"""
import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
import mindspore.dataset.transforms.vision.c_transforms as C
from mindspore import log as logger
from util import visualize_list, save_and_check_md5, diff_mse
DATA_DIR = "../data/dataset/testImageNetData/train/"
GENERATE_GOLDEN = False
def test_invert_py(plot=False):
"""
Test Invert python op
"""
logger.info("Test Invert Python op")
# Original Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.ToTensor()])
ds_original = ds.map(input_columns="image",
operations=transforms_original())
ds_original = ds_original.batch(512)
for idx, (image, _) in enumerate(ds_original):
if idx == 0:
images_original = np.transpose(image, (0, 2, 3, 1))
else:
images_original = np.append(images_original,
np.transpose(image, (0, 2, 3, 1)),
axis=0)
# Color Inverted Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_invert = F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.Invert(),
F.ToTensor()])
ds_invert = ds.map(input_columns="image",
operations=transforms_invert())
ds_invert = ds_invert.batch(512)
for idx, (image, _) in enumerate(ds_invert):
if idx == 0:
images_invert = np.transpose(image, (0, 2, 3, 1))
else:
images_invert = np.append(images_invert,
np.transpose(image, (0, 2, 3, 1)),
axis=0)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = np.mean((images_invert[i] - images_original[i]) ** 2)
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
visualize_list(images_original, images_invert)
def test_invert_c(plot=False):
"""
Test Invert Cpp op
"""
logger.info("Test Invert cpp op")
# Original Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = [C.Decode(), C.Resize(size=[224, 224])]
ds_original = ds.map(input_columns="image",
operations=transforms_original)
ds_original = ds_original.batch(512)
for idx, (image, _) in enumerate(ds_original):
if idx == 0:
images_original = image
else:
images_original = np.append(images_original,
image,
axis=0)
# Invert Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transform_invert = [C.Decode(), C.Resize(size=[224, 224]),
C.Invert()]
ds_invert = ds.map(input_columns="image",
operations=transform_invert)
ds_invert = ds_invert.batch(512)
for idx, (image, _) in enumerate(ds_invert):
if idx == 0:
images_invert = image
else:
images_invert = np.append(images_invert,
image,
axis=0)
if plot:
visualize_list(images_original, images_invert)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_invert[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
def test_invert_py_c(plot=False):
"""
Test Invert Cpp op and python op
"""
logger.info("Test Invert cpp and python op")
# Invert Images in cpp
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(input_columns=["image"],
operations=[C.Decode(), C.Resize((224, 224))])
ds_c_invert = ds.map(input_columns="image",
operations=C.Invert())
ds_c_invert = ds_c_invert.batch(512)
for idx, (image, _) in enumerate(ds_c_invert):
if idx == 0:
images_c_invert = image
else:
images_c_invert = np.append(images_c_invert,
image,
axis=0)
# invert images in python
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(input_columns=["image"],
operations=[C.Decode(), C.Resize((224, 224))])
transforms_p_invert = F.ComposeOp([lambda img: img.astype(np.uint8),
F.ToPIL(),
F.Invert(),
np.array])
ds_p_invert = ds.map(input_columns="image",
operations=transforms_p_invert())
ds_p_invert = ds_p_invert.batch(512)
for idx, (image, _) in enumerate(ds_p_invert):
if idx == 0:
images_p_invert = image
else:
images_p_invert = np.append(images_p_invert,
image,
axis=0)
num_samples = images_c_invert.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_p_invert[i], images_c_invert[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
visualize_list(images_c_invert, images_p_invert, visualize_mode=2)
def test_invert_one_channel():
"""
Test Invert cpp op with one channel image
"""
logger.info("Test Invert C Op With One Channel Images")
c_op = C.Invert()
try:
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(input_columns=["image"],
operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])])
ds.map(input_columns="image",
operations=c_op)
except RuntimeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "The shape" in str(e)
def test_invert_md5_py():
"""
Test Invert python op with md5 check
"""
logger.info("Test Invert python op with md5 check")
# Generate dataset
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_invert = F.ComposeOp([F.Decode(),
F.Invert(),
F.ToTensor()])
data = ds.map(input_columns="image", operations=transforms_invert())
# Compare with expected md5 from images
filename = "invert_01_result_py.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_invert_md5_c():
"""
Test Invert cpp op with md5 check
"""
logger.info("Test Invert cpp op with md5 check")
# Generate dataset
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_invert = [C.Decode(),
C.Resize(size=[224, 224]),
C.Invert(),
F.ToTensor()]
data = ds.map(input_columns="image", operations=transforms_invert)
# Compare with expected md5 from images
filename = "invert_01_result_c.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_invert_py(plot=False)
test_invert_c(plot=False)
test_invert_py_c(plot=False)
test_invert_one_channel()
test_invert_md5_py()
test_invert_md5_c()