forked from mindspore-Ecosystem/mindspore
88 lines
3.4 KiB
Python
Executable File
88 lines
3.4 KiB
Python
Executable File
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""learning rate generator"""
|
|
import math
|
|
import numpy as np
|
|
|
|
|
|
def get_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
|
|
"""
|
|
generate learning rate array
|
|
|
|
Args:
|
|
lr_init(float): init learning rate
|
|
lr_end(float): end learning rate
|
|
lr_max(float): max learning rate
|
|
warmup_epochs(int): number of warmup epochs
|
|
total_epochs(int): total epoch of training
|
|
steps_per_epoch(int): steps of one epoch
|
|
lr_decay_mode(string): learning rate decay mode, including steps, poly, cosine or default
|
|
|
|
Returns:
|
|
np.array, learning rate array
|
|
"""
|
|
lr_each_step = []
|
|
total_steps = steps_per_epoch * total_epochs
|
|
warmup_steps = steps_per_epoch * warmup_epochs
|
|
if lr_decay_mode == 'steps':
|
|
decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
|
|
for i in range(total_steps):
|
|
if i < decay_epoch_index[0]:
|
|
lr = lr_max
|
|
elif i < decay_epoch_index[1]:
|
|
lr = lr_max * 0.1
|
|
elif i < decay_epoch_index[2]:
|
|
lr = lr_max * 0.01
|
|
else:
|
|
lr = lr_max * 0.001
|
|
lr_each_step.append(lr)
|
|
elif lr_decay_mode == 'poly':
|
|
if warmup_steps != 0:
|
|
inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
|
|
else:
|
|
inc_each_step = 0
|
|
for i in range(total_steps):
|
|
if i < warmup_steps:
|
|
lr = float(lr_init) + inc_each_step * float(i)
|
|
else:
|
|
base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
|
|
lr = float(lr_max) * base * base
|
|
if lr < 0.0:
|
|
lr = 0.0
|
|
lr_each_step.append(lr)
|
|
elif lr_decay_mode == 'cosine':
|
|
decay_steps = total_steps - warmup_steps
|
|
for i in range(total_steps):
|
|
if i < warmup_steps:
|
|
lr_inc = (float(lr_max) - float(lr_init)) / float(warmup_steps)
|
|
lr = float(lr_init) + lr_inc * (i + 1)
|
|
else:
|
|
linear_decay = (total_steps - i) / decay_steps
|
|
cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps))
|
|
decayed = linear_decay * cosine_decay + 0.00001
|
|
lr = lr_max * decayed
|
|
lr_each_step.append(lr)
|
|
else:
|
|
for i in range(total_steps):
|
|
if i < warmup_steps:
|
|
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
|
|
else:
|
|
lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
|
|
lr_each_step.append(lr)
|
|
|
|
learning_rate = np.array(lr_each_step).astype(np.float32)
|
|
|
|
return learning_rate
|