forked from mindspore-Ecosystem/mindspore
1298 lines
18 KiB
Plaintext
1298 lines
18 KiB
Plaintext
/**
|
|
* Copyright 2019 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
namespace mindspore.schema;
|
|
|
|
enum ResizeMethod: byte {
|
|
UNKNOWN = -1,
|
|
LINEAR = 0,
|
|
NEAREST = 1,
|
|
CUBIC = 2
|
|
}
|
|
|
|
enum CoordinateTransformMode: byte {
|
|
COMMON = 0,
|
|
HALF_PIXEL = 1,
|
|
PYTORCH_HALF_PIXEL = 2,
|
|
TF_HALF_PIXEL = 3,
|
|
TF_CROP_AND_RESIZE = 4,
|
|
ALIGN_CORNERS = 5,
|
|
ASYMMETRIC = 6,
|
|
ALIGN_CORNERS_WITH_HALF_PIEXL = 7
|
|
}
|
|
|
|
enum NearestMode : byte {
|
|
NORMAL = 0,
|
|
ROUND_HALF_DOWN = 1,
|
|
ROUND_HALF_UP = 2,
|
|
FLOOR = 3,
|
|
CEIL = 4
|
|
}
|
|
|
|
enum Format : int {
|
|
NCHW = 0,
|
|
NHWC,
|
|
NHWC4,
|
|
HWKC,
|
|
HWCK,
|
|
KCHW,
|
|
CKHW,
|
|
KHWC,
|
|
CHWK,
|
|
HW,
|
|
HW4,
|
|
NC,
|
|
NC4,
|
|
NC4HW4 = 100,
|
|
NUM_OF_FORMAT
|
|
}
|
|
|
|
enum ActivationType : byte {
|
|
NO_ACTIVATION = 0,
|
|
RELU = 1,
|
|
SIGMOID = 2,
|
|
RELU6 = 3,
|
|
ELU = 4,
|
|
LEAKY_RELU = 5,
|
|
ABS = 6,
|
|
RELU1 = 7,
|
|
SOFTSIGN = 8,
|
|
SOFTPLUS = 9,
|
|
TANH = 10,
|
|
SELU = 11,
|
|
HSWISH = 12,
|
|
HSIGMOID = 13,
|
|
THRESHOLDRELU = 14,
|
|
LINEAR = 15,
|
|
HARD_TANH = 16,
|
|
SIGN = 17,
|
|
SWISH = 18,
|
|
UNKNOWN = 19
|
|
}
|
|
enum ActivationGradType : byte {
|
|
NO_ACTIVATION = 0,
|
|
RELU = 1,
|
|
SIGMOID = 2,
|
|
RELU6 = 3,
|
|
ELU = 4,
|
|
LEAKY_RELU = 5,
|
|
ABS = 6,
|
|
RELU1 = 7,
|
|
SOFTSIGN = 8,
|
|
SOFTPLUS = 9,
|
|
TANH = 10,
|
|
SELU = 11,
|
|
HSWISH = 12,
|
|
HSIGMOID = 13,
|
|
THRESHOLDRELU = 14,
|
|
LINEAR = 15,
|
|
UNKNOWN = 16,
|
|
LOG = 17
|
|
}
|
|
enum ReduceType : byte {
|
|
REDUCE_MAX = 0,
|
|
REDUCE_MEAN = 1,
|
|
REDUCE_ALL = 2,
|
|
REDUCE_ANY = 3,
|
|
REDUCE_LOG_SUM_EXP = 4,
|
|
REDUCE_PROD = 5,
|
|
REDUCE_SUM = 6,
|
|
UNKNOWN = 7
|
|
}
|
|
|
|
enum PoolMode : byte {
|
|
MAX_POOLING = 0,
|
|
MEAN_POOLING = 1,
|
|
}
|
|
|
|
enum EltwiseMode : byte {
|
|
PROD = 0,
|
|
SUM = 1,
|
|
MAXIMUM = 2,
|
|
UNKNOWN = 3
|
|
}
|
|
|
|
enum PadMode : byte {
|
|
NOTSET = 0,
|
|
SAME_UPPER = 1,
|
|
VALID = 2,
|
|
CAFFE = 4,
|
|
SAME_LOWER = 5
|
|
}
|
|
|
|
enum RoundMode : byte {
|
|
FLOOR = 0,
|
|
CEIL = 1
|
|
}
|
|
|
|
enum PaddingMode : byte {
|
|
CONSTANT = 0,
|
|
REFLECT = 1,
|
|
SYMMETRIC = 2,
|
|
MODE_RESERVED = 3
|
|
}
|
|
|
|
enum LshProjectionType : byte {
|
|
UNKNOWN = 0,
|
|
SPARSE = 1,
|
|
DENSE = 2
|
|
}
|
|
|
|
table Pad {
|
|
paddings: [int];
|
|
paddingMode: PaddingMode;
|
|
constantValue: float;
|
|
}
|
|
|
|
table Maximum {
|
|
}
|
|
|
|
table Minimum {
|
|
}
|
|
|
|
table Flatten {
|
|
}
|
|
table FlattenGrad {
|
|
}
|
|
table Concat {
|
|
axis: int;
|
|
n: int; // DEPRECATED
|
|
}
|
|
|
|
table SoftMax {
|
|
axis: int = -1;
|
|
}
|
|
|
|
table Activation {
|
|
type: ActivationType = 0;
|
|
alpha: float = 0.2;
|
|
min_val: float = -1.0;
|
|
max_val: float = 1.0;
|
|
}
|
|
table ActivationGrad {
|
|
type: ActivationType = 0;
|
|
alpha: float = 0.2;
|
|
}
|
|
|
|
|
|
table Conv2D {
|
|
format: Format = 0;
|
|
group: int;
|
|
channelIn: int;
|
|
channelOut: int;
|
|
kernelW: int;
|
|
kernelH: int;
|
|
strideW: int;
|
|
strideH: int;
|
|
padMode: PadMode;
|
|
padUp: int;
|
|
padDown: int;
|
|
padLeft: int;
|
|
padRight: int;
|
|
dilateW: int;
|
|
dilateH: int;
|
|
hasBias: bool = false; // DEPRECATED
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table Adder {
|
|
format: Format = 0;
|
|
group: int;
|
|
channelIn: int;
|
|
channelOut: int;
|
|
kernelW: int;
|
|
kernelH: int;
|
|
strideW: int;
|
|
strideH: int;
|
|
padMode: PadMode;
|
|
padUp: int;
|
|
padDown: int;
|
|
padLeft: int;
|
|
padRight: int;
|
|
dilateW: int;
|
|
dilateH: int;
|
|
hasBias: bool = false;
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table Conv2DGradFilter {
|
|
format: Format = 0;
|
|
group: int;
|
|
channelIn: int;
|
|
channelOut: int;
|
|
kernelW: int;
|
|
kernelH: int;
|
|
strideW: int;
|
|
strideH: int;
|
|
padMode: PadMode;
|
|
padUp: int;
|
|
padDown: int;
|
|
padLeft: int;
|
|
padRight: int;
|
|
dilateW: int;
|
|
dilateH: int;
|
|
hasBias: bool = false; // DEPRECATED
|
|
filter_shape: [int]; // DEPRECATED
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table Conv2DGradInput {
|
|
format: Format = 0;
|
|
group: int;
|
|
channelIn: int;
|
|
channelOut: int;
|
|
kernelW: int;
|
|
kernelH: int;
|
|
strideW: int;
|
|
strideH: int;
|
|
padMode: PadMode;
|
|
padUp: int;
|
|
padDown: int;
|
|
padLeft: int;
|
|
padRight: int;
|
|
dilateW: int;
|
|
dilateH: int;
|
|
hasBias: bool = false; // DEPRECATED
|
|
input_shape: [int]; // DEPRECATED
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table GroupConv2DGradInput {
|
|
format: Format = 0;
|
|
group: int;
|
|
channelIn: int;
|
|
channelOut: int;
|
|
kernelW: int;
|
|
kernelH: int;
|
|
strideW: int;
|
|
strideH: int;
|
|
padMode: PadMode;
|
|
padUp: int;
|
|
padDown: int;
|
|
padLeft: int;
|
|
padRight: int;
|
|
dilateW: int;
|
|
dilateH: int;
|
|
hasBias: bool = false; // DEPRECATED
|
|
input_shape: [int];
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table FusedBatchNorm {
|
|
epsilon: float = 0.00001; // eg. epsilon=0.001
|
|
momentum: float = 0.9;
|
|
spatial: int = 1;
|
|
}
|
|
|
|
table BatchNorm {
|
|
epsilon: float = 0.00001; // eg. epsilon=0.001
|
|
}
|
|
|
|
table BiasGrad {
|
|
}
|
|
|
|
|
|
table SoftmaxCrossEntropy {
|
|
}
|
|
|
|
table SparseSoftmaxCrossEntropy {
|
|
isGrad: bool;
|
|
}
|
|
|
|
table make_tuple {
|
|
}
|
|
|
|
|
|
table PoolingGrad {
|
|
format: Format = 0;
|
|
poolingMode: PoolMode;
|
|
global: bool = false;
|
|
windowW: int;
|
|
windowH: int;
|
|
strideW: int;
|
|
strideH: int;
|
|
padMode: PadMode;
|
|
padUp: int;
|
|
padDown: int;
|
|
padLeft: int;
|
|
padRight: int;
|
|
roundMode: RoundMode;
|
|
}
|
|
table Shape {
|
|
}
|
|
|
|
table ConstantOfShape{
|
|
dataType: int;
|
|
value: [float];
|
|
}
|
|
|
|
table Nchw2Nhwc { // DEPRECATED
|
|
|
|
}
|
|
|
|
table Nhwc2Nchw { // DEPRECATED
|
|
|
|
}
|
|
|
|
table FakeQuantWithMinMaxVars {
|
|
narrowRange: bool;
|
|
numBits: int;
|
|
}
|
|
|
|
table BiasAdd {
|
|
axis: [int]; // DEPRECATED
|
|
}
|
|
|
|
table ROIPooling {
|
|
pooledH: int;
|
|
pooledW: int;
|
|
scale: float;
|
|
}
|
|
|
|
table Pooling {
|
|
format: Format = 0;
|
|
poolingMode: PoolMode;
|
|
global: bool = false;
|
|
windowW: int;
|
|
windowH: int;
|
|
strideW: int;
|
|
strideH: int;
|
|
padMode: PadMode;
|
|
padUp: int;
|
|
padDown: int;
|
|
padLeft: int;
|
|
padRight: int;
|
|
roundMode: RoundMode;
|
|
activationType: ActivationType = 0;
|
|
avgMode: int = 0;
|
|
}
|
|
|
|
table DepthwiseConv2D {
|
|
format: Format = 0;
|
|
channelIn: int;
|
|
channelMultiplier: int;
|
|
kernelW: int;
|
|
kernelH: int;
|
|
strideW: int;
|
|
strideH: int;
|
|
padMode: PadMode;
|
|
padUp: int;
|
|
padDown: int;
|
|
padLeft: int;
|
|
padRight: int;
|
|
dilateW: int;
|
|
dilateH: int;
|
|
hasBias: bool = false; // DEPRECATED
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table DeDepthwiseConv2D {
|
|
format: Format = 0;
|
|
channelIn: int;
|
|
channelMultiplier: int;
|
|
kernelW: int;
|
|
kernelH: int;
|
|
strideW: int;
|
|
strideH: int;
|
|
padMode: PadMode;
|
|
padUp: int;
|
|
padDown: int;
|
|
padLeft: int;
|
|
padRight: int;
|
|
dilateW: int;
|
|
dilateH: int;
|
|
hasBias: bool = false; // DEPRECATED
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
|
|
table Resize {
|
|
format: Format = 0;
|
|
method: ResizeMethod;
|
|
newHeight: long;
|
|
newWidth: long;
|
|
alignCorners: bool = false; // DEPRECATED IN FUTURE: use 'coordinateTransformMode' instead.
|
|
preserveAspectRatio: bool = false;
|
|
coordinateTransformMode : CoordinateTransformMode;
|
|
cubicCoeff : float;
|
|
excludeOutside : int;
|
|
extrapolationValue : float = 0;
|
|
nearestMode : NearestMode;
|
|
}
|
|
|
|
table DetectionPostProcess {
|
|
format: Format = 0;
|
|
inputSize: int;
|
|
hScale: float;
|
|
wScale: float;
|
|
xScale: float;
|
|
yScale: float;
|
|
NmsIouThreshold: float;
|
|
NmsScoreThreshold: float;
|
|
MaxDetections: long;
|
|
DetectionsPerClass: long;
|
|
MaxClassesPerDetection: long;
|
|
NumClasses: long;
|
|
UseRegularNms: bool;
|
|
OutQuantized: bool;
|
|
}
|
|
|
|
table FullConnection {
|
|
hasBias: bool;
|
|
axis: int;
|
|
useAxis: bool;
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
// Mean(input_tensor, axis, keep_dims)
|
|
table Mean { // DEPRECATED
|
|
axis: [int];
|
|
keepDims: bool = false;
|
|
}
|
|
|
|
table DeConv2D {
|
|
format: Format = 0;
|
|
group: int;
|
|
channelIn: int;
|
|
channelOut: int;
|
|
kernelW: int;
|
|
kernelH: int;
|
|
strideW: int;
|
|
strideH: int;
|
|
padMode: PadMode;
|
|
padUp: int;
|
|
padDown: int;
|
|
padLeft: int;
|
|
padRight: int;
|
|
dilateW: int;
|
|
dilateH: int;
|
|
hasBias: bool = false; // DEPRECATED
|
|
activationType: ActivationType = 0;
|
|
outputPaddingW: int;
|
|
outputPaddingH: int;
|
|
}
|
|
|
|
table DeConv2DGradFilter {
|
|
format: Format = 0;
|
|
group: int;
|
|
channelIn: int;
|
|
channelOut: int;
|
|
kernelW: int;
|
|
kernelH: int;
|
|
strideW: int;
|
|
strideH: int;
|
|
padMode: PadMode;
|
|
padUp: int;
|
|
padDown: int;
|
|
padLeft: int;
|
|
padRight: int;
|
|
dilateW: int;
|
|
dilateH: int;
|
|
hasBias: bool = false; // DEPRECATED
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table BNGrad {
|
|
eps: float;
|
|
momentum: float;
|
|
}
|
|
|
|
table Scale {
|
|
axis: int;
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table Eltwise {
|
|
mode: EltwiseMode;
|
|
}
|
|
|
|
table Add {
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table Sub {
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table Mul {
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table Div {
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table AddGrad {
|
|
}
|
|
|
|
table SubGrad {
|
|
}
|
|
|
|
table MulGrad {
|
|
}
|
|
|
|
table DivGrad {
|
|
}
|
|
table RealDiv {
|
|
}
|
|
|
|
table Rsqrt {
|
|
}
|
|
|
|
table Equal {
|
|
}
|
|
|
|
table Less {
|
|
}
|
|
|
|
table Greater {
|
|
}
|
|
|
|
table NotEqual {
|
|
}
|
|
|
|
table LessEqual {
|
|
}
|
|
|
|
table GreaterEqual {
|
|
}
|
|
|
|
table Min {
|
|
}
|
|
|
|
table Slice {
|
|
format: Format = 0;
|
|
axes: [int];
|
|
begin: [int];
|
|
size: [int];
|
|
}
|
|
|
|
table Floor {
|
|
}
|
|
|
|
table Abs {
|
|
}
|
|
|
|
table Neg {
|
|
}
|
|
|
|
table NegGrad {
|
|
}
|
|
|
|
table Exp {
|
|
base : float = -1.0;
|
|
scale : float = 1.0;
|
|
shift : float = 0.0;
|
|
}
|
|
|
|
table Cos {
|
|
}
|
|
|
|
table Sin {
|
|
}
|
|
|
|
table Sqrt {
|
|
}
|
|
|
|
table Square {
|
|
}
|
|
|
|
table Ceil {
|
|
}
|
|
|
|
table Log {
|
|
}
|
|
|
|
table LogGrad {
|
|
}
|
|
|
|
table Tan {
|
|
}
|
|
|
|
table Atan {
|
|
}
|
|
|
|
table Asin {
|
|
}
|
|
|
|
table Reshape {
|
|
format: Format = 0;
|
|
shape: [long];
|
|
}
|
|
|
|
table Power {
|
|
power: float;
|
|
scale: float;
|
|
shift: float;
|
|
}
|
|
table PowerGrad {
|
|
power: float;
|
|
scale: float;
|
|
shift: float;
|
|
}
|
|
table ArgMax {
|
|
axis: int;
|
|
outMaxValue: bool;
|
|
topK: int = 1;
|
|
keepDims: bool;
|
|
axisType: int;
|
|
}
|
|
|
|
table ArgMin {
|
|
axis: int;
|
|
outMaxValue: bool;
|
|
topK: int = 1;
|
|
keepDims: bool;
|
|
axisType: int;
|
|
}
|
|
|
|
table NetOutput {
|
|
}
|
|
|
|
table MatMul {
|
|
broadcast : bool = false; // DEPRECATED
|
|
transposeA : bool = false;
|
|
transposeB : bool = false;
|
|
}
|
|
|
|
table PReLU {
|
|
channelShared : bool = false;
|
|
slope: [float];
|
|
}
|
|
|
|
table LeakyReLU {
|
|
negativeSlope: float;
|
|
}
|
|
|
|
table StridedSlice {
|
|
beginMask: int;
|
|
endMask: int;
|
|
ellipsisMask: int;
|
|
newAxisMask: int;
|
|
shrinkAxisMask: int;
|
|
begin: [int];
|
|
end: [int];
|
|
stride: [int];
|
|
isScale: [int];
|
|
}
|
|
|
|
table Stack {
|
|
axis: int;
|
|
n: int;
|
|
isScale: [int];
|
|
}
|
|
|
|
table Range {
|
|
dType: int;
|
|
start: int;
|
|
limit: int;
|
|
delta: int = 1;
|
|
}
|
|
|
|
table ExpandDims {
|
|
dim: int;
|
|
}
|
|
|
|
table Tile {
|
|
multiples: [int];
|
|
dims: [int];
|
|
}
|
|
|
|
table Cast {
|
|
srcT: int;
|
|
dstT: int;
|
|
}
|
|
|
|
table QuantDTypeCast {
|
|
srcT: int;
|
|
dstT: int;
|
|
}
|
|
|
|
table Split {
|
|
numberSplit: int;
|
|
sizeSplits: [int];
|
|
splitDim: int;
|
|
}
|
|
|
|
table Crop {
|
|
axis : long;
|
|
offsets : [long];
|
|
}
|
|
|
|
table Permute { // DEPRECATED
|
|
order: [long];
|
|
}
|
|
|
|
table Clip {
|
|
max: float;
|
|
min: float;
|
|
}
|
|
|
|
table Constant {
|
|
}
|
|
|
|
|
|
table Elu {
|
|
alpha: float = 1.0;
|
|
}
|
|
|
|
table Broadcast {
|
|
}
|
|
|
|
table BroadcastTo {
|
|
dst_shape: [int];
|
|
}
|
|
|
|
table Lrn {
|
|
alpha: float = 0.0001;
|
|
beta: float = 0.75;
|
|
bias: float = 1.0;
|
|
size: int;
|
|
}
|
|
|
|
enum ReduceMode : byte {
|
|
ReduceMean = 0,
|
|
ReduceMax = 1,
|
|
ReduceMin = 2,
|
|
ReduceProd = 3,
|
|
ReduceSum = 4,
|
|
ReduceSumSquare = 5,
|
|
ReduceASum = 6,
|
|
ReduceAll = 7
|
|
}
|
|
|
|
table Reduce {
|
|
axes: [int];
|
|
keepDims: int;
|
|
mode: ReduceMode;
|
|
reduceToEnd: bool = false;
|
|
coeff: float = 1.0;
|
|
}
|
|
|
|
table Transpose {
|
|
perm: [int];
|
|
conjugate: bool = false; // DEPRECATED
|
|
}
|
|
|
|
table Squeeze {
|
|
axis: [int];
|
|
}
|
|
|
|
table Unsqueeze {
|
|
axis: [int];
|
|
}
|
|
|
|
table Upsample {
|
|
mode: string;
|
|
scales: [float];
|
|
}
|
|
|
|
table Dropout {
|
|
ratio : float = 0.5;
|
|
}
|
|
|
|
table LocalResponseNormalization {
|
|
depth_radius: int;
|
|
bias: float;
|
|
alpha: float;
|
|
beta: float;
|
|
}
|
|
|
|
table ZerosLike {
|
|
}
|
|
|
|
table TopK {
|
|
k : int;
|
|
sorted : bool = true;
|
|
}
|
|
|
|
table SpaceToDepth {
|
|
blockSize : int;
|
|
format: Format = 0;
|
|
}
|
|
|
|
table SpaceToBatch {
|
|
blockShape : [int];
|
|
paddings : [int];
|
|
}
|
|
|
|
table SparseToDense {
|
|
validateIndices: bool;
|
|
}
|
|
|
|
table ReverseSequence {
|
|
seqAxis: int;
|
|
batchAxis: int;
|
|
}
|
|
|
|
table Rank {
|
|
}
|
|
|
|
|
|
table Gather {
|
|
axis: int;
|
|
batchDims: int;
|
|
}
|
|
|
|
table GatherNd {
|
|
batchDims: int; // DEPRECATED
|
|
}
|
|
|
|
table Fill {
|
|
dims: [int];
|
|
}
|
|
|
|
table DepthToSpace {
|
|
blockSize: int;
|
|
format: Format = 0;
|
|
}
|
|
|
|
|
|
table BatchToSpace {
|
|
blockShape: [int];
|
|
crops: [int];
|
|
}
|
|
|
|
table BatchToSpaceND {
|
|
blockShape: [int];
|
|
crops: [int];
|
|
}
|
|
|
|
table AddN {
|
|
N: int; // DEPRECATED
|
|
}
|
|
|
|
|
|
table EmbeddingLookup {
|
|
maxNorm: float = 0.0;
|
|
}
|
|
|
|
table EmbeddingLookupSparse {
|
|
spIds: [int];
|
|
spWeights: [float];
|
|
//combiner: Combiner=0;
|
|
maxNortm: float;
|
|
}
|
|
|
|
table FloorDiv {
|
|
}
|
|
|
|
table FloorMod {
|
|
}
|
|
|
|
table Mod {
|
|
}
|
|
|
|
table L2Norm {
|
|
axis: [int];
|
|
epsilon: float;
|
|
activationType: ActivationType = 0;
|
|
}
|
|
|
|
table LogicalAnd {
|
|
}
|
|
|
|
table LogicalOr {
|
|
}
|
|
|
|
table LogicalXor {
|
|
}
|
|
|
|
table LogicalNot {
|
|
}
|
|
|
|
table MatrixDiag {
|
|
k: int;
|
|
numRows: int;
|
|
numCols: int;
|
|
paddingValue: float;
|
|
}
|
|
|
|
table Select {
|
|
}
|
|
|
|
table TfReduce {
|
|
type: ReduceType = 7;
|
|
}
|
|
|
|
table Reverse {
|
|
axis: [int];
|
|
}
|
|
|
|
table Round {
|
|
}
|
|
|
|
table Scatter {
|
|
}
|
|
|
|
table ScatterND {
|
|
}
|
|
|
|
table Unique {
|
|
outType: int; // DEPRECATED
|
|
}
|
|
|
|
table Unstack {
|
|
num: int; // deprecated
|
|
axis: int;
|
|
}
|
|
|
|
table OnnxInt8Quantize {
|
|
}
|
|
|
|
table OnnxInt8Dequantize {
|
|
}
|
|
|
|
table FakeQuantWithMinMax {
|
|
}
|
|
|
|
table FakeQuantWithMinMaxPerChannel {
|
|
}
|
|
|
|
table BatchNormFold {
|
|
}
|
|
|
|
table MulFold {
|
|
}
|
|
|
|
table AddFold {
|
|
}
|
|
|
|
table SquaredDifference {
|
|
}
|
|
|
|
table TupleGetItem {
|
|
}
|
|
|
|
table ApplyMomentum {
|
|
gradientScale: float;
|
|
useNesterov: bool;
|
|
}
|
|
|
|
table Sgd {
|
|
weightDecay: float;
|
|
dampening: float;
|
|
useNesterov: bool;
|
|
}
|
|
|
|
table Adam {
|
|
useNesterov: bool;
|
|
}
|
|
|
|
table Assign {
|
|
}
|
|
|
|
table AssignAdd {
|
|
}
|
|
|
|
table Where{
|
|
condition: [bool];
|
|
}
|
|
|
|
table OneHot {
|
|
axis: int;
|
|
}
|
|
|
|
table Lstm{
|
|
bidirection: bool = false;
|
|
smooth: float = 0.0;
|
|
}
|
|
|
|
table Gru{
|
|
bidirection: bool = false;
|
|
}
|
|
|
|
table PriorBox {
|
|
min_sizes: [int];
|
|
max_sizes: [int];
|
|
aspect_ratios: [float];
|
|
variances: [float];
|
|
image_size_w: int;
|
|
image_size_h: int;
|
|
step_w: float;
|
|
step_h: float;
|
|
clip: bool = true;
|
|
flip: bool = true;
|
|
offset: float;
|
|
}
|
|
|
|
table SpaceToBatchND {
|
|
blockShape : [int];
|
|
paddings : [int];
|
|
}
|
|
|
|
table MakeTuple {
|
|
}
|
|
|
|
table ToFormat {
|
|
srcT: int;
|
|
dstT: int;
|
|
}
|
|
|
|
|
|
table Depend {
|
|
}
|
|
|
|
table ControlDepend {
|
|
}
|
|
|
|
table Return {
|
|
}
|
|
|
|
table Proposal {
|
|
feat_stride : float;
|
|
base_size : float;
|
|
min_size : float;
|
|
ratio : [float];
|
|
scale : [float];
|
|
pre_nms_topn : int;
|
|
post_nms_topn : int;
|
|
nms_thresh : float;
|
|
}
|
|
|
|
table Custom {
|
|
custom : [ubyte];
|
|
}
|
|
|
|
|
|
table BlackBox {
|
|
id : string;
|
|
size : int;
|
|
address : [ubyte];
|
|
}
|
|
|
|
table LshProjection {
|
|
type : LshProjectionType;
|
|
}
|
|
|
|
table HashtableLookup {
|
|
}
|
|
|
|
table SkipGram {
|
|
includeAllGrams : bool;
|
|
maxSkipSize : int;
|
|
ngramSize : int;
|
|
}
|
|
|
|
table CustomPredict {
|
|
outputNum : int;
|
|
weightThreshold : float;
|
|
}
|
|
|
|
table CustomNormalize {
|
|
}
|
|
|
|
table CustomExtractFeatures {
|
|
}
|
|
|
|
table AudioSpectrogram {
|
|
windowSize : int;
|
|
stride : int;
|
|
magSquare : bool;
|
|
}
|
|
|
|
table Mfcc {
|
|
freqUpperLimit : float;
|
|
freqLowerLimit : float;
|
|
filterBankChannelNum : int;
|
|
dctCoeffNum : int;
|
|
}
|
|
|
|
table Rfft {
|
|
fftLength : int;
|
|
}
|
|
|
|
table FftReal {
|
|
}
|
|
|
|
table FftImag {
|
|
}
|
|
|
|
table DropoutGrad {
|
|
ratio : float = 0.5;
|
|
}
|
|
|
|
table MaximumGrad {
|
|
}
|
|
|
|
table MinimumGrad {
|
|
}
|
|
|
|
table NonMaxSuppression {
|
|
centerPointBox : int = 0;
|
|
}
|
|
|
|
table InstanceNorm {
|
|
epsilon : float = 0.00001;
|
|
}
|
|
|
|
table Loop {
|
|
subGraphIndex : int;
|
|
}
|
|
|
|
table Identity {
|
|
}
|
|
|
|
table LayerNorm {
|
|
begin_norm_axis : int;
|
|
begin_params_axis : int;
|
|
epsilon : float = 0.00001;
|
|
}
|
|
|
|
table While {
|
|
condSubgraphIndex : int;
|
|
bodySubgraphIndex : int;
|
|
}
|
|
|
|
table If {
|
|
}
|
|
|
|
table UnsortedSegmentSum {
|
|
numSegments : int;
|
|
}
|
|
|
|
table OnesLike {
|
|
|
|
}
|
|
|
|
table BinaryCrossEntropy {
|
|
reduction : int = 1;
|
|
}
|
|
|
|
table BinaryCrossEntropyGrad {
|
|
reduction : int = 1;
|
|
}
|
|
|
|
table LpNormalization {
|
|
axis : int;
|
|
p : int;
|
|
}
|
|
|
|
table Switch {
|
|
}
|
|
|
|
table Partial {
|
|
subGraphIndex : int;
|
|
}
|
|
|
|
table TensorListFromTensor {
|
|
elementDType : int;
|
|
shapeType : int;
|
|
}
|
|
|
|
table TensorListStack {
|
|
numElements : int;
|
|
elementDType : int;
|
|
}
|
|
|
|
table TensorListGetItem {
|
|
elementDType : int;
|
|
}
|
|
|
|
table TensorListSetItem {
|
|
elementDType : int;
|
|
}
|
|
|
|
table TensorListReserve {
|
|
elementDType : int;
|
|
shapeType : int;
|
|
}
|
|
|
|
table All {
|
|
keepDims : int;
|
|
}
|
|
|
|
table Assert {
|
|
summarize : int;
|
|
}
|
|
|
|
table SmoothL1Loss {
|
|
beta : float;
|
|
}
|
|
|
|
table SmoothL1LossGrad {
|
|
beta : float;
|
|
}
|
|
|
|
table SigmoidCrossEntropyWithLogits {
|
|
}
|
|
|
|
table SigmoidCrossEntropyWithLogitsGrad {
|
|
}
|
|
|
|
table Reciprocal {
|
|
}
|
|
|
|
table Merge {
|
|
}
|
|
|
|
table GeLU {
|
|
approximate : bool = false;
|
|
}
|
|
|
|
table NonZero {
|
|
}
|
|
|
|
table InvertPermutation {
|
|
}
|
|
|
|
table Size {
|
|
}
|
|
|
|
table RandomStandardNormal {
|
|
seed : int;
|
|
seed2 : int;
|
|
}
|
|
|
|
table CropAndResize {
|
|
method : ResizeMethod;
|
|
extrapolation_value : float;
|
|
}
|
|
|
|
table StridedSliceGrad {
|
|
beginMask: int;
|
|
endMask: int;
|
|
ellipsisMask: int;
|
|
newAxisMask: int;
|
|
shrinkAxisMask: int;
|
|
begin: [int];
|
|
end: [int];
|
|
stride: [int];
|
|
isScale: [int];
|
|
}
|
|
|
|
table Erf {
|
|
}
|
|
|
|
table IsFinite {
|
|
}
|
|
|
|
table BatchMatMul {
|
|
transpose_a :bool;
|
|
transpose_b :bool;
|
|
}
|
|
|
|
|
|
table LinSpace {
|
|
}
|
|
|
|
table UniformReal {
|
|
seed : int;
|
|
seed2 : int;
|
|
}
|
|
table AbsGrad {
|
|
transpose_a :bool;
|
|
} |