panfengfeng ca562f53b0 | ||
---|---|---|
.. | ||
scripts | ||
src | ||
README.md | ||
eval.py | ||
export.py | ||
train.py |
README.md
Contents
ShuffleNetV2 Description
ShuffleNetV2 is a much faster and more accurate network than the previous networks on different platforms such as Ascend or GPU. Paper Ma, N., Zhang, X., Zheng, H. T., & Sun, J. (2018). Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European conference on computer vision (ECCV) (pp. 116-131).
Model architecture
The overall network architecture of ShuffleNetV2 is show below:
Dataset
Dataset used: imagenet
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
- Train: 120G, 1.2W images
- Test: 5G, 50000 images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
Environment Requirements
- Hardware(GPU)
- Prepare hardware environment with GPU processor.
- Framework
- For more information, please check the resources below:
Script description
Script and sample code
+-- ShuffleNetV2
+-- Readme.md # descriptions about ShuffleNetV2
+-- scripts
+--run_distribute_train_for_gpu.sh # shell script for distributed training
+--run_eval_for_gpu.sh # shell script for evaluation
+--run_standalone_train_for_gpu.sh # shell script for standalone training
+-- src
+--config.py # parameter configuration
+--dataset.py # creating dataset
+--loss.py # loss function for network
+--lr_generator.py # learning rate config
+-- train.py # training script
+-- eval.py # evaluation script
+-- blocks.py # ShuffleNetV2 blocks
+-- network.py # ShuffleNetV2 model network
Training process
Usage
You can start training using python or shell scripts. The usage of shell scripts as follows:
- Distributed training on GPU: sh run_standalone_train_for_gpu.sh [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]
- Standalone training on GPU: sh run_standalone_train_for_gpu.sh [DATASET_PATH]
Launch
# training example
python:
GPU: mpirun --allow-run-as-root -n 8 --output-filename log_output --merge-stderr-to-stdout python train.py --is_distributed=True --platform='GPU' --dataset_path='~/imagenet/train/' > train.log 2>&1 &
shell:
GPU: cd scripts & sh run_distribute_train_for_gpu.sh 8 0,1,2,3,4,5,6,7 ~/imagenet/train/
Result
Training result will be stored in the example path. Checkpoints will be stored at ./checkpoint
by default, and training log will be redirected to ./train/train.log
.
Eval process
Usage
You can start evaluation using python or shell scripts. The usage of shell scripts as follows:
- GPU: sh run_eval_for_gpu.sh [DATASET_PATH] [CHECKPOINT_PATH]
Launch
# infer example
python:
GPU: CUDA_VISIBLE_DEVICES=0 python eval.py --platform='GPU' --dataset_path='~/imagenet/val/' > eval.log 2>&1 &
shell:
GPU: cd scripts & sh run_eval_for_gpu.sh '~/imagenet/val/' 'checkpoint_file'
checkpoint can be produced in training process.
Result
Inference result will be stored in the example path, you can find result in eval.log
.
Model description
Performance
Training Performance
Parameters | ShuffleNetV2 |
---|---|
Resource | NV SMX2 V100-32G |
uploaded Date | 09/24/2020 |
MindSpore Version | 1.0.0 |
Dataset | ImageNet |
Training Parameters | src/config.py |
Optimizer | Momentum |
Loss Function | CrossEntropySmooth |
Accuracy | 69.4%(TOP1) |
Total time | 49 h 8ps |
Inference Performance
Parameters | |
---|---|
Resource | NV SMX2 V100-32G |
uploaded Date | 09/24/2020 |
MindSpore Version | 1.0.0 |
Dataset | ImageNet, 1.2W |
batch_size | 128 |
outputs | probability |
Accuracy | acc=69.4%(TOP1) |
ModelZoo Homepage
Please check the official homepage.