mindspore/model_zoo/official/cv/mobilenetv2
l00591931 9ec100d069 Change TensorAdd to Add, from r1.1 to master 2021-02-01 17:53:52 +08:00
..
scripts add filter weight when fine-tune in mobilenetv2 2020-12-15 18:42:50 +08:00
src Change TensorAdd to Add, from r1.1 to master 2021-02-01 17:53:52 +08:00
README.md fix some errors and add resnext50 Chinese README 2020-12-21 18:04:14 +08:00
README_CN.md modify code formats for master 2021-01-14 14:24:51 +08:00
eval.py incremental learn -> fine tune 2020-09-23 19:31:47 +08:00
export.py fix GPU device_id bug 2020-12-31 15:12:26 +08:00
mindspore_hub_conf.py add mobilenetv2 and ssd hub 2020-09-19 17:07:46 +08:00
train.py add filter weight when fine-tune in mobilenetv2 2020-12-15 18:42:50 +08:00

README.md

Contents

MobileNetV2 Description

MobileNetV2 is tuned to mobile phone CPUs through a combination of hardware- aware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances.Nov 20, 2019.

Paper Howard, Andrew, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang et al. "Searching for MobileNetV2." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324. 2019.

Model architecture

The overall network architecture of MobileNetV2 is show below:

Link

Dataset

Dataset used: imagenet

  • Dataset size: ~125G, 1.2W colorful images in 1000 classes
    • Train: 120G, 1.2W images
    • Test: 5G, 50000 images
  • Data format: RGB images.
    • Note: Data will be processed in src/dataset.py

Features

Mixed Precision(Ascend)

The mixed precision training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.

Environment Requirements

Script description

Script and sample code

├── MobileNetV2
  ├── README.md              # descriptions about MobileNetV2
  ├── scripts
     ├──run_train.sh        # shell script for train, fine_tune or incremental  learn with CPU, GPU or Ascend
     ├──run_eval.sh         # shell script for evaluation with CPU, GPU or Ascend
  ├── src
     ├──args.py             # parse args
     ├──config.py           # parameter configuration
     ├──dataset.py          # creating dataset
     ├──lr_generator.py     # learning rate config
     ├──mobilenetV2.py      # MobileNetV2 architecture
     ├──models.py           # contain define_net and Loss, Monitor
     ├──utils.py            # utils to load ckpt_file for fine tune or incremental learn
  ├── train.py               # training script
  ├── eval.py                # evaluation script
  ├── export.py              # export mindir script
  ├── mindspore_hub_conf.py  #  mindspore hub interface

Training process

Usage

You can start training using python or shell scripts. The usage of shell scripts as follows:

  • Ascend: sh run_train.sh Ascend [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [RANK_TABLE_FILE] [DATASET_PATH] [CKPT_PATH] [FREEZE_LAYER] [FILTER_HEAD]
  • GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH] [FREEZE_LAYER] [FILTER_HEAD]
  • CPU: sh run_trian.sh CPU [DATASET_PATH] [CKPT_PATH] [FREEZE_LAYER] [FILTER_HEAD]

CKPT_PATH FREEZE_LAYER and FILTER_HEAD are optional, when set CKPT_PATH, FREEZE_LAYER must be set. FREEZE_LAYER should be in ["none", "backbone"], and if you set FREEZE_LAYER="backbone", the parameter in backbone will be freezed when training and the parameter in head will not be load from checkpoint. if FILTER_HEAD=True, the parameter in head will not be load from checkpoint.

RANK_TABLE_FILE is HCCL configuration file when running on Ascend. The common restrictions on using the distributed service are as follows. For details, see the HCCL documentation.

  • In a single-node system, a cluster of 1, 2, 4, or 8 devices is supported. In a multi-node system, a cluster of 8 x N devices is supported.
  • Each host has four devices numbered 0 to 3 and four devices numbered 4 to 7 deployed on two different networks. During training of 2 or 4 devices, the devices must be connected and clusters cannot be created across networks.

Launch

# training example
  python:
      Ascend: python train.py --platform Ascend --dataset_path [TRAIN_DATASET_PATH]
      GPU: python train.py --platform GPU --dataset_path [TRAIN_DATASET_PATH]
      CPU: python train.py --platform CPU --dataset_path [TRAIN_DATASET_PATH]

  shell:
      Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json [TRAIN_DATASET_PATH]
      GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 [TRAIN_DATASET_PATH]
      CPU: sh run_train.sh CPU [TRAIN_DATASET_PATH]

# fine tune whole network example
  python:
      Ascend: python train.py --platform Ascend --dataset_path [TRAIN_DATASET_PATH] --pretrain_ckpt [CKPT_PATH] --freeze_layer none --filter_head True
      GPU: python train.py --platform GPU --dataset_path [TRAIN_DATASET_PATH] --pretrain_ckpt [CKPT_PATH] --freeze_layer none --filter_head True
      CPU: python train.py --platform CPU --dataset_path [TRAIN_DATASET_PATH] --pretrain_ckpt [CKPT_PATH] --freeze_layer none --filter_head True

  shell:
      Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json [TRAIN_DATASET_PATH]  [CKPT_PATH] none True
      GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 [TRAIN_DATASET_PATH] [CKPT_PATH] none True
      CPU: sh run_train.sh CPU [TRAIN_DATASET_PATH] [CKPT_PATH] none True

# fine tune full connected layers example
  python:
      Ascend: python --platform Ascend train.py --dataset_path [TRAIN_DATASET_PATH]--pretrain_ckpt [CKPT_PATH] --freeze_layer backbone
      GPU: python --platform GPU train.py --dataset_path [TRAIN_DATASET_PATH] --pretrain_ckpt [CKPT_PATH] --freeze_layer backbone
      CPU: python --platform CPU train.py --dataset_path [TRAIN_DATASET_PATH] --pretrain_ckpt [CKPT_PATH] --freeze_layer backbone

  shell:
      Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json [TRAIN_DATASET_PATH] [CKPT_PATH] backbone
      GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 [TRAIN_DATASET_PATH] [CKPT_PATH] backbone
      CPU: sh run_train.sh CPU [TRAIN_DATASET_PATH] [CKPT_PATH] backbone

Result

Training result will be stored in the example path. Checkpoints will be stored at . /checkpoint by default, and training log will be redirected to ./train.log like followings with the platform CPU and GPU, will be wrote to ./train/rank*/log*.log with the platform Ascend .

epoch: [  0/200], step:[  624/  625], loss:[5.258/5.258], time:[140412.236], lr:[0.100]
epoch time: 140522.500, per step time: 224.836, avg loss: 5.258
epoch: [  1/200], step:[  624/  625], loss:[3.917/3.917], time:[138221.250], lr:[0.200]
epoch time: 138331.250, per step time: 221.330, avg loss: 3.917

Evaluation process

Usage

You can start training using python or shell scripts.If the train method is train or fine tune, should not input the [CHECKPOINT_PATH] The usage of shell scripts as follows:

  • Ascend: sh run_eval.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH]
  • GPU: sh run_eval.sh GPU [DATASET_PATH] [CHECKPOINT_PATH]
  • CPU: sh run_eval.sh CPU [DATASET_PATH] [BACKBONE_CKPT_PATH]

Launch

# eval example
  python:
      Ascend: python eval.py --platform Ascend --dataset_path [VAL_DATASET_PATH] --pretrain_ckpt ./ckpt_0/mobilenetv2_15.ckpt
      GPU: python eval.py --platform GPU --dataset_path [VAL_DATASET_PATH] --pretrain_ckpt ./ckpt_0/mobilenetv2_15.ckpt
      CPU: python eval.py --platform CPU --dataset_path [VAL_DATASET_PATH] --pretrain_ckpt ./ckpt_0/mobilenetv2_15.ckpt

  shell:
      Ascend: sh run_eval.sh Ascend [VAL_DATASET_PATH] ./checkpoint/mobilenetv2_head_15.ckpt
      GPU: sh run_eval.sh GPU [VAL_DATASET_PATH] ./checkpoint/mobilenetv2_head_15.ckpt
      CPU: sh run_eval.sh CPU [VAL_DATASET_PATH] ./checkpoint/mobilenetv2_head_15.ckpt

checkpoint can be produced in training process.

Result

Inference result will be stored in the example path, you can find result like the followings in eval.log.

result: {'acc': 0.71976314102564111} ckpt=./ckpt_0/mobilenet-200_625.ckpt

Model Export

python export.py --platform [PLATFORM] --ckpt_file [CKPT_PATH] --file_format [EXPORT_FORMAT]

EXPORT_FORMAT should be in ["AIR", "ONNX", "MINDIR"]

Model description

Performance

Training Performance

Parameters MobilenetV2
Model Version V1 V1
Resource Ascend 910, cpu:2.60GHz 192cores, memory:755G NV SMX2 V100-32G
uploaded Date 05/06/2020 05/06/2020
MindSpore Version 0.3.0 0.3.0
Dataset ImageNet ImageNet
Training Parameters src/config.py src/config.py
Optimizer Momentum Momentum
Loss Function SoftmaxCrossEntropy SoftmaxCrossEntropy
outputs probability probability
Loss 1.908 1.913
Accuracy ACC1[71.78%] ACC1[71.08%]
Total time 753 min 845 min
Params (M) 3.3 M 3.3 M
Checkpoint for Fine tuning 27.3 M 27.3 M
Scripts Link

Description of Random Situation

In train.py, we set the seed which is used by numpy.random, mindspore.common.Initializer, mindspore.ops.composite.random_ops and mindspore.nn.probability.distribution.

ModelZoo Homepage

Please check the official homepage.