mindspore/model_zoo/official/cv/googlenet/eval.py

83 lines
3.3 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############test googlenet example on cifar10#################
python eval.py
"""
import argparse
import mindspore.nn as nn
from mindspore import context
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
from src.config import cifar_cfg, imagenet_cfg
from src.dataset import create_dataset_cifar10, create_dataset_imagenet
from src.googlenet import GoogleNet
from src.CrossEntropySmooth import CrossEntropySmooth
set_seed(1)
parser = argparse.ArgumentParser(description='googlenet')
parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'],
help='dataset name.')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
args_opt = parser.parse_args()
if __name__ == '__main__':
if args_opt.dataset_name == 'cifar10':
cfg = cifar_cfg
dataset = create_dataset_cifar10(cfg.data_path, 1, False)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net = GoogleNet(num_classes=cfg.num_classes)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
weight_decay=cfg.weight_decay)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
elif args_opt.dataset_name == "imagenet":
cfg = imagenet_cfg
dataset = create_dataset_imagenet(cfg.val_data_path, 1, False)
if not cfg.use_label_smooth:
cfg.label_smooth_factor = 0.0
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
net = GoogleNet(num_classes=cfg.num_classes)
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
else:
raise ValueError("dataset is not support.")
device_target = cfg.device_target
context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
if device_target == "Ascend":
context.set_context(device_id=cfg.device_id)
if args_opt.checkpoint_path is not None:
param_dict = load_checkpoint(args_opt.checkpoint_path)
print("load checkpoint from [{}].".format(args_opt.checkpoint_path))
else:
param_dict = load_checkpoint(cfg.checkpoint_path)
print("load checkpoint from [{}].".format(cfg.checkpoint_path))
load_param_into_net(net, param_dict)
net.set_train(False)
acc = model.eval(dataset)
print("accuracy: ", acc)