mindspore/include/api/net.h

142 lines
3.9 KiB
C++

/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INCLUDE_API_NET_H
#define MINDSPORE_INCLUDE_API_NET_H
#include <memory>
#include <vector>
#include <unordered_set>
#include <string>
#include "include/api/types.h"
#include "include/api/data_type.h"
#include "include/api/cfg.h"
namespace mindspore {
/// \brief Register node or sub network
#define REG(_name) Register(_name, #_name)
class Expr;
class NodeImpl;
class NetImpl;
class NodeSet;
class Graph;
class NetData;
class NetBase {
public:
NetBase() = default;
virtual std::vector<Expr *> operator()(const std::vector<Expr *> &inputs) = 0;
virtual uint32_t type() = 0;
};
class Node : public NetBase {
public:
Node();
virtual ~Node();
/// \brief Create output expression from node
/// \param[in] name Name of input (like "labels" etc.)
///
/// \return Expression
Expr *Create(std::string name);
/// \brief Run node on inputs. This operator is used in Net::construct()
///
/// \param[in] inputs Inputs expression for the node.
/// \return Output node expression vector
std::vector<Expr *> operator()(const std::vector<Expr *> &inputs) override;
uint32_t type() final;
private:
friend NodeImpl;
std::shared_ptr<NodeImpl> impl_ = nullptr;
};
class Net : public NetBase, public std::enable_shared_from_this<Net> {
public:
Net();
virtual ~Net();
explicit Net(std::string name);
explicit Net(const Graph &g);
/// \brief Define the relation between network inputs and outputs
///
/// \param[in] inputs expression vector
///
/// \return expression vector
virtual std::vector<Expr *> construct(const std::vector<Expr *> &inputs);
/// \brief Addition operation
///
/// \param[in] inputs Two elements to add
///
/// \return expression vector (single element)
/// \brief Execution operator. Connect inputs to outputs via user defined construct
///
/// \return expression vector
std::vector<Expr *> operator()(const std::vector<Expr *> &inputs);
void Register(Net *net, std::string &&name);
void Register(Node *node, std::string &&name);
/// \brief Find the trainable params for the trained network
///
/// \return NodeSet for all trainable nodes
std::shared_ptr<NodeSet> trainable_params();
virtual void Add(NetBase *element);
/// \brief Input shape
///
/// \param[in] idx input index
///
/// \return Specific input shape vector
const std::vector<int> InputShape(int idx);
/// \brief Output shape
///
/// \param[in] idx Output index
///
/// \return Specific output shape vector
const std::vector<int> OutputShape(int idx);
uint32_t type() final;
private:
friend NetImpl;
friend NetData;
std::shared_ptr<NetImpl> impl_;
};
class SoftMaxCrossEntropyCfg {
public:
std::string reduction = "mean"; /**< Specifies reduction mode. The optional values are "none", "mean", "sum" */
};
class AdamConfig {
public:
float learning_rate_ = 1e-3;
float beta1_ = 0.9;
float beta2_ = 0.999;
float eps_ = 1e-08;
bool use_nesterov_ = false;
};
namespace NN {
Net *NetWithLoss(Net *net, Node *loss);
Graph *GraphWithLoss(Graph *g, Node *loss);
Node *Adam(std::shared_ptr<NodeSet> learn, const AdamConfig &cfg);
Node *SoftmaxCrossEntropy(const SoftMaxCrossEntropyCfg &cfg);
std::unique_ptr<Node> Input(std::vector<int> dims, DataType data_type = DataType::kNumberTypeFloat32, int fmt = NHWC);
}; // namespace NN
} // namespace mindspore
#endif // MINDSPORE_INCLUDE_API_NET_H