mindspore/include/api/model_parallel_runner.h

137 lines
5.4 KiB
C++

/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INCLUDE_API_MODEL_PARALLEL_RUNNER_H
#define MINDSPORE_INCLUDE_API_MODEL_PARALLEL_RUNNER_H
#include <vector>
#include <memory>
#include <utility>
#include <map>
#include <string>
#include "include/api/status.h"
#include "include/api/context.h"
namespace mindspore {
/// \brief The RunnerConfig class is used to store environment variables during execution
/// management.
class RunnerConfig {
public:
struct Data;
RunnerConfig();
~RunnerConfig() = default;
/// \brief Set the number of workers at runtime. Only valid for ModelParallelRunner.
///
/// \param[in] workers_num the number of workers at runtime.
void SetWorkersNum(int32_t workers_num);
/// \brief Set the context at runtime. Only valid for ModelParallelRunner.
///
/// \param[in] context store environment variables at runtime.
void SetContext(const std::shared_ptr<Context> &context);
/// \brief Set the config before runtime. Only valid for ModelParallelRunner.
///
/// \param[in] section The category of the configuration parameter.
/// \param[in] config store environment variables before runtime.
inline void SetConfigInfo(const std::string &section, const std::map<std::string, std::string> &config);
/// \brief Get the current config setting. Only valid for ModelParallelRunner.
///
/// \return The current config setting.
inline std::map<std::string, std::map<std::string, std::string>> GetConfigInfo() const;
/// \brief Get the current operators parallel workers number setting. Only valid for ModelParallelRunner.
///
/// \return The current operators parallel workers number setting.
int32_t GetWorkersNum() const;
/// \brief Get the current context setting. Only valid for ModelParallelRunner.
///
/// \return The current operators context setting.
std::shared_ptr<Context> GetContext() const;
private:
void SetConfigInfo(const std::vector<char> &section, const std::map<std::vector<char>, std::vector<char>> &config);
std::map<std::vector<char>, std::map<std::vector<char>, std::vector<char>>> GetConfigInfoChar() const;
std::shared_ptr<Data> data_ = nullptr;
};
void RunnerConfig::SetConfigInfo(const std::string &section, const std::map<std::string, std::string> &config) {
SetConfigInfo(StringToChar(section), MapStringToVectorChar(config));
}
std::map<std::string, std::map<std::string, std::string>> RunnerConfig::GetConfigInfo() const {
return MapMapCharToString(GetConfigInfoChar());
}
class ModelPool;
/// \brief The ModelParallelRunner class is used to define a MindSpore ModelParallelRunner, facilitating Model
/// management.
class MS_API ModelParallelRunner {
public:
ModelParallelRunner() = default;
~ModelParallelRunner() = default;
/// \brief build a model parallel runner from model path so that it can run on a device.
///
/// \param[in] model_path Define the model path.
/// \param[in] runner_config Define the config used to store options during model pool init.
///
/// \return Status.
inline Status Init(const std::string &model_path, const std::shared_ptr<RunnerConfig> &runner_config = nullptr);
/// \brief build a model parallel runner from model buffer so that it can run on a device.
///
/// \param[in] model_data Define the buffer read from a model file.
/// \param[in] data_size Define bytes number of model buffer.
/// \param[in] runner_config Define the config used to store options during model pool init.
///
/// \return Status.
Status Init(const void *model_data, const size_t data_size,
const std::shared_ptr<RunnerConfig> &runner_config = nullptr);
/// \brief Obtains all input tensors information of the model.
///
/// \return The vector that includes all input tensors.
std::vector<MSTensor> GetInputs();
/// \brief Obtains all output tensors information of the model.
///
/// \return The vector that includes all output tensors.
std::vector<MSTensor> GetOutputs();
/// \brief Inference ModelParallelRunner.
///
/// \param[in] inputs A vector where model inputs are arranged in sequence.
/// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
/// \param[in] before CallBack before predict.
/// \param[in] after CallBack after predict.
///
/// \return Status.
Status Predict(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs,
const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
private:
Status Init(const std::vector<char> &model_path, const std::shared_ptr<RunnerConfig> &runner_config);
std::shared_ptr<ModelPool> model_pool_ = nullptr;
};
Status ModelParallelRunner::Init(const std::string &model_path, const std::shared_ptr<RunnerConfig> &runner_config) {
return Init(StringToChar(model_path), runner_config);
}
} // namespace mindspore
#endif // MINDSPORE_INCLUDE_API_MODEL_PARALLEL_RUNNER_H