forked from mindspore-Ecosystem/mindspore
178 lines
5.9 KiB
Python
178 lines
5.9 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
import json
|
|
import os
|
|
import numpy as np
|
|
#import jsbeautifier
|
|
from mindspore import log as logger
|
|
|
|
COLUMNS = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
|
|
"col_sint16", "col_sint32", "col_sint64"]
|
|
|
|
|
|
def save_golden(cur_dir, golden_ref_dir, result_dict):
|
|
"""
|
|
Save the dictionary values as the golden result in .npz file
|
|
"""
|
|
logger.info("cur_dir is {}".format(cur_dir))
|
|
logger.info("golden_ref_dir is {}".format(golden_ref_dir))
|
|
np.savez(golden_ref_dir, np.array(list(result_dict.values())))
|
|
|
|
|
|
def save_golden_dict(cur_dir, golden_ref_dir, result_dict):
|
|
"""
|
|
Save the dictionary (both keys and values) as the golden result in .npz file
|
|
"""
|
|
logger.info("cur_dir is {}".format(cur_dir))
|
|
logger.info("golden_ref_dir is {}".format(golden_ref_dir))
|
|
np.savez(golden_ref_dir, np.array(list(result_dict.items())))
|
|
|
|
|
|
def compare_to_golden(golden_ref_dir, result_dict):
|
|
"""
|
|
Compare as numpy arrays the test result to the golden result
|
|
"""
|
|
test_array = np.array(list(result_dict.values()))
|
|
golden_array = np.load(golden_ref_dir, allow_pickle=True)['arr_0']
|
|
assert np.array_equal(test_array, golden_array)
|
|
|
|
|
|
def compare_to_golden_dict(golden_ref_dir, result_dict):
|
|
"""
|
|
Compare as dictionaries the test result to the golden result
|
|
"""
|
|
golden_array = np.load(golden_ref_dir, allow_pickle=True)['arr_0']
|
|
assert result_dict == dict(golden_array)
|
|
|
|
|
|
def save_json(filename, parameters, result_dict):
|
|
"""
|
|
Save the result dictionary in json file
|
|
"""
|
|
fout = open(filename[:-3] + "json", "w")
|
|
options = jsbeautifier.default_options()
|
|
options.indent_size = 2
|
|
|
|
out_dict = {**parameters, **{"columns": result_dict}}
|
|
fout.write(jsbeautifier.beautify(json.dumps(out_dict), options))
|
|
|
|
|
|
|
|
def save_and_check(data, parameters, filename, generate_golden=False):
|
|
"""
|
|
Save the dataset dictionary and compare (as numpy array) with golden file.
|
|
Use create_dict_iterator to access the dataset.
|
|
"""
|
|
num_iter = 0
|
|
result_dict = {}
|
|
for column_name in COLUMNS:
|
|
result_dict[column_name] = []
|
|
|
|
for item in data.create_dict_iterator(): # each data is a dictionary
|
|
for data_key in list(item.keys()):
|
|
if data_key not in result_dict:
|
|
result_dict[data_key] = []
|
|
result_dict[data_key].append(item[data_key].tolist())
|
|
num_iter += 1
|
|
|
|
logger.info("Number of data in data1: {}".format(num_iter))
|
|
|
|
cur_dir = os.path.dirname(os.path.realpath(__file__))
|
|
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
|
if generate_golden:
|
|
# Save as the golden result
|
|
save_golden(cur_dir, golden_ref_dir, result_dict)
|
|
|
|
compare_to_golden(golden_ref_dir, result_dict)
|
|
|
|
# Save to a json file for inspection
|
|
# save_json(filename, parameters, result_dict)
|
|
|
|
|
|
def save_and_check_dict(data, parameters, filename, generate_golden=False):
|
|
"""
|
|
Save the dataset dictionary and compare (as dictionary) with golden file.
|
|
Use create_dict_iterator to access the dataset.
|
|
"""
|
|
num_iter = 0
|
|
result_dict = {}
|
|
|
|
for item in data.create_dict_iterator(): # each data is a dictionary
|
|
for data_key in list(item.keys()):
|
|
if data_key not in result_dict:
|
|
result_dict[data_key] = []
|
|
result_dict[data_key].append(item[data_key].tolist())
|
|
num_iter += 1
|
|
|
|
logger.info("Number of data in ds1: {}".format(num_iter))
|
|
|
|
cur_dir = os.path.dirname(os.path.realpath(__file__))
|
|
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
|
if generate_golden:
|
|
# Save as the golden result
|
|
save_golden_dict(cur_dir, golden_ref_dir, result_dict)
|
|
|
|
compare_to_golden_dict(golden_ref_dir, result_dict)
|
|
|
|
# Save to a json file for inspection
|
|
# save_json(filename, parameters, result_dict)
|
|
|
|
|
|
def ordered_save_and_check(data, parameters, filename, generate_golden=False):
|
|
"""
|
|
Save the dataset dictionary and compare (as numpy array) with golden file.
|
|
Use create_tuple_iterator to access the dataset.
|
|
"""
|
|
num_iter = 0
|
|
|
|
result_dict = {}
|
|
|
|
for item in data.create_tuple_iterator(): # each data is a dictionary
|
|
for data_key in range(0, len(item)):
|
|
if data_key not in result_dict:
|
|
result_dict[data_key] = []
|
|
result_dict[data_key].append(item[data_key].tolist())
|
|
num_iter += 1
|
|
|
|
logger.info("Number of data in data1: {}".format(num_iter))
|
|
|
|
cur_dir = os.path.dirname(os.path.realpath(__file__))
|
|
golden_ref_dir = os.path.join(cur_dir, "../../data/dataset", 'golden', filename)
|
|
if generate_golden:
|
|
# Save as the golden result
|
|
save_golden(cur_dir, golden_ref_dir, result_dict)
|
|
|
|
compare_to_golden(golden_ref_dir, result_dict)
|
|
|
|
# Save to a json file for inspection
|
|
# save_json(filename, parameters, result_dict)
|
|
|
|
|
|
def diff_mse(in1, in2):
|
|
mse = (np.square(in1.astype(float) / 255 - in2.astype(float) / 255)).mean()
|
|
return mse * 100
|
|
|
|
|
|
def diff_me(in1, in2):
|
|
mse = (np.abs(in1.astype(float) - in2.astype(float))).mean()
|
|
return mse / 255 * 100
|
|
|
|
|
|
def diff_ssim(in1, in2):
|
|
from skimage.measure import compare_ssim as ssim
|
|
val = ssim(in1, in2, multichannel=True)
|
|
return (1 - val) * 100
|