mindspore/tests/ut/python/dataset/test_sampler.py

171 lines
6.9 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import mindspore.dataset as ds
from mindspore import log as logger
import numpy as np
# test5trainimgs.json contains 5 images whose un-decoded shape is [83554, 54214, 65512, 54214, 64631]
# the label of each image is [0,0,0,1,1] each image can be uniquely identified
# via the following lookup table (dict){(83554, 0): 0, (54214, 0): 1, (54214, 1): 2, (65512, 0): 3, (64631, 1): 4}
def test_sequential_sampler(print_res=False):
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
def test_config(num_samples, num_repeats=None):
sampler = ds.SequentialSampler()
data1 = ds.ManifestDataset(manifest_file, num_samples=num_samples, sampler=sampler)
if num_repeats is not None:
data1 = data1.repeat(num_repeats)
res = []
for item in data1.create_dict_iterator():
logger.info("item[image].shape[0]: {}, item[label].item(): {}"
.format(item["image"].shape[0], item["label"].item()))
res.append(map[(item["image"].shape[0], item["label"].item())])
if print_res:
logger.info("image.shapes and labels: {}".format(res))
return res
assert test_config(num_samples=3, num_repeats=None) == [0, 1, 2]
assert test_config(num_samples=None, num_repeats=2) == [0, 1, 2, 3, 4] * 2
assert test_config(num_samples=4, num_repeats=2) == [0, 1, 2, 3] * 2
def test_random_sampler(print_res=False):
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
def test_config(replacement, num_samples, num_repeats):
sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples)
data1 = ds.ManifestDataset(manifest_file, sampler=sampler)
data1 = data1.repeat(num_repeats)
res = []
for item in data1.create_dict_iterator():
res.append(map[(item["image"].shape[0], item["label"].item())])
if print_res:
logger.info("image.shapes and labels: {}".format(res))
return res
# this tests that each epoch COULD return different samples than the previous epoch
assert len(set(test_config(replacement=False, num_samples=2, num_repeats=6))) > 2
# the following two tests test replacement works
ordered_res = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4]
assert sorted(test_config(replacement=False, num_samples=None, num_repeats=4)) == ordered_res
assert sorted(test_config(replacement=True, num_samples=None, num_repeats=4)) != ordered_res
def test_random_sampler_multi_iter(print_res=False):
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
def test_config(replacement, num_samples, num_repeats, validate):
sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples)
data1 = ds.ManifestDataset(manifest_file, sampler=sampler)
while num_repeats > 0:
res = []
for item in data1.create_dict_iterator():
res.append(map[(item["image"].shape[0], item["label"].item())])
if print_res:
logger.info("image.shapes and labels: {}".format(res))
if validate != sorted(res):
break
num_repeats -= 1
assert num_repeats > 0
test_config(replacement=True, num_samples=5, num_repeats=5, validate=[0, 1, 2, 3, 4, 5])
def test_sampler_py_api():
sampler = ds.SequentialSampler().create()
sampler.set_num_rows(128)
sampler.set_num_samples(64)
sampler.initialize()
sampler.get_indices()
sampler = ds.RandomSampler().create()
sampler.set_num_rows(128)
sampler.set_num_samples(64)
sampler.initialize()
sampler.get_indices()
sampler = ds.DistributedSampler(8, 4).create()
sampler.set_num_rows(128)
sampler.set_num_samples(64)
sampler.initialize()
sampler.get_indices()
def test_python_sampler():
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
class Sp1(ds.Sampler):
def __iter__(self):
return iter([i for i in range(self.dataset_size)])
class Sp2(ds.Sampler):
def __init__(self):
super(Sp2, self).__init__()
# at this stage, self.dataset_size and self.num_samples are not yet known
self.cnt = 0
def __iter__(self): # first epoch, all 0, second epoch all 1, third all 2 etc.. ...
return iter([self.cnt for i in range(self.num_samples)])
def reset(self):
self.cnt = (self.cnt + 1) % self.dataset_size
def test_config(num_samples, num_repeats, sampler):
data1 = ds.ManifestDataset(manifest_file, num_samples=num_samples, sampler=sampler)
if num_repeats is not None:
data1 = data1.repeat(num_repeats)
res = []
for item in data1.create_dict_iterator():
logger.info("item[image].shape[0]: {}, item[label].item(): {}"
.format(item["image"].shape[0], item["label"].item()))
res.append(map[(item["image"].shape[0], item["label"].item())])
# print(res)
return res
def test_generator():
class MySampler(ds.Sampler):
def __iter__(self):
for i in range(99, -1, -1):
yield i
data1 = ds.GeneratorDataset([(np.array(i),) for i in range(100)], ["data"], sampler = MySampler())
i = 99
for data in data1:
assert data[0] == (np.array(i),)
i = i - 1
assert test_config(5, 2, Sp1()) == [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
assert test_config(2, 6, Sp2()) == [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 0]
test_generator()
sp1 = Sp1().create()
sp1.set_num_rows(5)
sp1.set_num_samples(5)
sp1.initialize()
assert list(sp1.get_indices()) == [0, 1, 2, 3, 4]
if __name__ == '__main__':
test_sequential_sampler(True)
test_random_sampler(True)
test_random_sampler_multi_iter(True)
test_sampler_py_api()
test_python_sampler()