mindspore/tests/ut/python/dataset/test_datasets_textfileop.py

88 lines
3.1 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import mindspore.dataset as ds
from mindspore import log as logger
import mindspore.dataset.transforms.nlp.utils as nlp
DATA_FILE = "../data/dataset/testTextFileDataset/1.txt"
DATA_ALL_FILE = "../data/dataset/testTextFileDataset/*"
def test_textline_dataset_one_file():
data = ds.TextFileDataset(DATA_FILE)
count = 0
for i in data.create_dict_iterator():
logger.info("{}".format(i["text"]))
count += 1
assert(count == 3)
def test_textline_dataset_all_file():
data = ds.TextFileDataset(DATA_ALL_FILE)
count = 0
for i in data.create_dict_iterator():
logger.info("{}".format(i["text"]))
count += 1
assert(count == 5)
def test_textline_dataset_totext():
data = ds.TextFileDataset(DATA_ALL_FILE, shuffle=False)
count = 0
line = ["This is a text file.", "Another file.", "Be happy every day.", "End of file.", "Good luck to everyone."]
for i in data.create_dict_iterator():
str = nlp.as_text(i["text"])
assert(str == line[count])
count += 1
assert(count == 5)
def test_textline_dataset_num_samples():
data = ds.TextFileDataset(DATA_FILE, num_samples=2)
count = 0
for i in data.create_dict_iterator():
count += 1
assert(count == 2)
def test_textline_dataset_distribution():
data = ds.TextFileDataset(DATA_ALL_FILE, num_shards=2, shard_id=1)
count = 0
for i in data.create_dict_iterator():
count += 1
assert(count == 3)
def test_textline_dataset_repeat():
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
data = data.repeat(3)
count = 0
line = ["This is a text file.", "Be happy every day.", "Good luck to everyone.",
"This is a text file.", "Be happy every day.", "Good luck to everyone.",
"This is a text file.", "Be happy every day.", "Good luck to everyone."]
for i in data.create_dict_iterator():
str = nlp.as_text(i["text"])
assert(str == line[count])
count += 1
assert(count == 9)
def test_textline_dataset_get_datasetsize():
data = ds.TextFileDataset(DATA_FILE)
size = data.get_dataset_size()
assert(size == 3)
if __name__ == "__main__":
test_textline_dataset_one_file()
test_textline_dataset_all_file()
test_textline_dataset_totext()
test_textline_dataset_num_samples()
test_textline_dataset_distribution()
test_textline_dataset_repeat()
test_textline_dataset_get_datasetsize()