forked from mindspore-Ecosystem/mindspore
209 lines
6.6 KiB
Python
209 lines
6.6 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import mindspore.dataset.transforms.vision.c_transforms as vision
|
|
import mindspore.dataset.transforms.c_transforms as data_trans
|
|
import pytest
|
|
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
|
|
def test_case_repeat():
|
|
"""
|
|
a simple repeat operation.
|
|
"""
|
|
logger.info("Test Simple Repeat")
|
|
# define parameters
|
|
repeat_count = 2
|
|
|
|
# apply dataset operations
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
|
|
data1 = data1.repeat(repeat_count)
|
|
|
|
num_iter = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
# in this example, each dictionary has keys "image" and "label"
|
|
logger.info("image is: {}".format(item["image"]))
|
|
logger.info("label is: {}".format(item["label"]))
|
|
num_iter += 1
|
|
|
|
logger.info("Number of data in data1: {}".format(num_iter))
|
|
|
|
|
|
def test_case_shuffle():
|
|
"""
|
|
a simple shuffle operation.
|
|
"""
|
|
logger.info("Test Simple Shuffle")
|
|
# define parameters
|
|
buffer_size = 8
|
|
seed = 10
|
|
|
|
# apply dataset operations
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
|
|
ds.config.set_seed(seed)
|
|
data1 = data1.shuffle(buffer_size=buffer_size)
|
|
|
|
for item in data1.create_dict_iterator():
|
|
logger.info("image is: {}".format(item["image"]))
|
|
logger.info("label is: {}".format(item["label"]))
|
|
|
|
|
|
def test_case_0():
|
|
"""
|
|
Test Repeat then Shuffle
|
|
"""
|
|
logger.info("Test Repeat then Shuffle")
|
|
# define parameters
|
|
repeat_count = 2
|
|
buffer_size = 7
|
|
seed = 9
|
|
|
|
# apply dataset operations
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
|
|
data1 = data1.repeat(repeat_count)
|
|
ds.config.set_seed(seed)
|
|
data1 = data1.shuffle(buffer_size=buffer_size)
|
|
|
|
num_iter = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
# in this example, each dictionary has keys "image" and "label"
|
|
logger.info("image is: {}".format(item["image"]))
|
|
logger.info("label is: {}".format(item["label"]))
|
|
num_iter += 1
|
|
|
|
logger.info("Number of data in data1: {}".format(num_iter))
|
|
|
|
|
|
def test_case_0_reverse():
|
|
"""
|
|
Test Shuffle then Repeat
|
|
"""
|
|
logger.info("Test Shuffle then Repeat")
|
|
# define parameters
|
|
repeat_count = 2
|
|
buffer_size = 10
|
|
seed = 9
|
|
|
|
# apply dataset operations
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
|
|
ds.config.set_seed(seed)
|
|
data1 = data1.shuffle(buffer_size=buffer_size)
|
|
data1 = data1.repeat(repeat_count)
|
|
|
|
num_iter = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
# in this example, each dictionary has keys "image" and "label"
|
|
logger.info("image is: {}".format(item["image"]))
|
|
logger.info("label is: {}".format(item["label"]))
|
|
num_iter += 1
|
|
|
|
logger.info("Number of data in data1: {}".format(num_iter))
|
|
|
|
|
|
def test_case_3():
|
|
"""
|
|
Test Map
|
|
"""
|
|
logger.info("Test Map Rescale and Resize, then Shuffle")
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
|
|
# define data augmentation parameters
|
|
rescale = 1.0 / 255.0
|
|
shift = 0.0
|
|
resize_height, resize_width = 224, 224
|
|
|
|
# define map operations
|
|
decode_op = vision.Decode()
|
|
rescale_op = vision.Rescale(rescale, shift)
|
|
# resize_op = vision.Resize(resize_height, resize_width,
|
|
# InterpolationMode.DE_INTER_LINEAR) # Bilinear mode
|
|
resize_op = vision.Resize((resize_height, resize_width))
|
|
|
|
# apply map operations on images
|
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
|
data1 = data1.map(input_columns=["image"], operations=rescale_op)
|
|
data1 = data1.map(input_columns=["image"], operations=resize_op)
|
|
|
|
# # apply ont-hot encoding on labels
|
|
num_classes = 4
|
|
one_hot_encode = data_trans.OneHot(num_classes) # num_classes is input argument
|
|
data1 = data1.map(input_columns=["label"], operations=one_hot_encode)
|
|
#
|
|
# # apply Datasets
|
|
buffer_size = 100
|
|
seed = 10
|
|
batch_size = 2
|
|
ds.config.set_seed(seed)
|
|
data1 = data1.shuffle(buffer_size=buffer_size) # 10000 as in imageNet train script
|
|
data1 = data1.batch(batch_size, drop_remainder=True)
|
|
|
|
num_iter = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
# in this example, each dictionary has keys "image" and "label"
|
|
logger.info("image is: {}".format(item["image"]))
|
|
logger.info("label is: {}".format(item["label"]))
|
|
num_iter += 1
|
|
|
|
logger.info("Number of data in data1: {}".format(num_iter))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
logger.info('===========now test Repeat============')
|
|
# logger.info('Simple Repeat')
|
|
test_case_repeat()
|
|
logger.info('\n')
|
|
|
|
logger.info('===========now test Shuffle===========')
|
|
# logger.info('Simple Shuffle')
|
|
test_case_shuffle()
|
|
logger.info('\n')
|
|
|
|
# Note: cannot work with different shapes, hence not for image
|
|
# logger.info('===========now test Batch=============')
|
|
# # logger.info('Simple Batch')
|
|
# test_case_batch()
|
|
# logger.info('\n')
|
|
|
|
logger.info('===========now test case 0============')
|
|
# logger.info('Repeat then Shuffle')
|
|
test_case_0()
|
|
logger.info('\n')
|
|
|
|
logger.info('===========now test case 0 reverse============')
|
|
# # logger.info('Shuffle then Repeat')
|
|
test_case_0_reverse()
|
|
logger.info('\n')
|
|
|
|
# logger.info('===========now test case 1============')
|
|
# # logger.info('Repeat with Batch')
|
|
# test_case_1()
|
|
# logger.info('\n')
|
|
|
|
# logger.info('===========now test case 2============')
|
|
# # logger.info('Batch with Shuffle')
|
|
# test_case_2()
|
|
# logger.info('\n')
|
|
|
|
# for image augmentation only
|
|
logger.info('===========now test case 3============')
|
|
logger.info('Map then Shuffle')
|
|
test_case_3()
|
|
logger.info('\n')
|
|
|
|
|