mindspore/tests/ut/python/dataset/test_cut_out.py

140 lines
4.0 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing CutOut op in DE
"""
import matplotlib.pyplot as plt
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c
import mindspore.dataset.transforms.vision.py_transforms as f
from mindspore import log as logger
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def visualize(image_1, image_2):
"""
visualizes the image using RandomErasing and Cutout
"""
plt.subplot(141)
plt.imshow(image_1)
plt.title("RandomErasing")
plt.subplot(142)
plt.imshow(image_2)
plt.title("Cutout")
plt.subplot(143)
plt.imshow(image_1 - image_2)
plt.title("Difference image")
plt.show()
def test_cut_out_op():
"""
Test Cutout
"""
logger.info("test_cut_out")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
transforms_1 = [
f.Decode(),
f.ToTensor(),
f.RandomErasing(value='random')
]
transform_1 = f.ComposeOp(transforms_1)
data1 = data1.map(input_columns=["image"], operations=transform_1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
decode_op = c.Decode()
cut_out_op = c.CutOut(80)
transforms_2 = [
decode_op,
cut_out_op
]
data2 = data2.map(input_columns=["image"], operations=transforms_2)
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
num_iter += 1
image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
# C image doesn't require transpose
image_2 = item2["image"]
logger.info("shape of image_1: {}".format(image_1.shape))
logger.info("shape of image_2: {}".format(image_2.shape))
logger.info("dtype of image_1: {}".format(image_1.dtype))
logger.info("dtype of image_2: {}".format(image_2.dtype))
# visualize(image_1, image_2)
def test_cut_out_op_multicut():
"""
Test Cutout
"""
logger.info("test_cut_out")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
transforms_1 = [
f.Decode(),
f.ToTensor(),
f.RandomErasing(value='random')
]
transform_1 = f.ComposeOp(transforms_1)
data1 = data1.map(input_columns=["image"], operations=transform_1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
decode_op = c.Decode()
cut_out_op = c.CutOut(80, num_patches=10)
transforms_2 = [
decode_op,
cut_out_op
]
data2 = data2.map(input_columns=["image"], operations=transforms_2)
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
num_iter += 1
image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
# C image doesn't require transpose
image_2 = item2["image"]
logger.info("shape of image_1: {}".format(image_1.shape))
logger.info("shape of image_2: {}".format(image_2.shape))
logger.info("dtype of image_1: {}".format(image_1.dtype))
logger.info("dtype of image_2: {}".format(image_2.dtype))
if __name__ == "__main__":
test_cut_out_op()
test_cut_out_op_multicut()