forked from mindspore-Ecosystem/mindspore
140 lines
4.0 KiB
Python
140 lines
4.0 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing CutOut op in DE
|
|
"""
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms.vision.c_transforms as c
|
|
import mindspore.dataset.transforms.vision.py_transforms as f
|
|
from mindspore import log as logger
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
|
|
def visualize(image_1, image_2):
|
|
"""
|
|
visualizes the image using RandomErasing and Cutout
|
|
"""
|
|
plt.subplot(141)
|
|
plt.imshow(image_1)
|
|
plt.title("RandomErasing")
|
|
|
|
plt.subplot(142)
|
|
plt.imshow(image_2)
|
|
plt.title("Cutout")
|
|
|
|
plt.subplot(143)
|
|
plt.imshow(image_1 - image_2)
|
|
plt.title("Difference image")
|
|
plt.show()
|
|
|
|
|
|
def test_cut_out_op():
|
|
"""
|
|
Test Cutout
|
|
"""
|
|
logger.info("test_cut_out")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
|
|
|
|
transforms_1 = [
|
|
f.Decode(),
|
|
f.ToTensor(),
|
|
f.RandomErasing(value='random')
|
|
]
|
|
transform_1 = f.ComposeOp(transforms_1)
|
|
data1 = data1.map(input_columns=["image"], operations=transform_1())
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
|
|
decode_op = c.Decode()
|
|
cut_out_op = c.CutOut(80)
|
|
|
|
transforms_2 = [
|
|
decode_op,
|
|
cut_out_op
|
|
]
|
|
|
|
data2 = data2.map(input_columns=["image"], operations=transforms_2)
|
|
|
|
num_iter = 0
|
|
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
|
num_iter += 1
|
|
image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
# C image doesn't require transpose
|
|
image_2 = item2["image"]
|
|
|
|
logger.info("shape of image_1: {}".format(image_1.shape))
|
|
logger.info("shape of image_2: {}".format(image_2.shape))
|
|
|
|
logger.info("dtype of image_1: {}".format(image_1.dtype))
|
|
logger.info("dtype of image_2: {}".format(image_2.dtype))
|
|
|
|
# visualize(image_1, image_2)
|
|
|
|
|
|
def test_cut_out_op_multicut():
|
|
"""
|
|
Test Cutout
|
|
"""
|
|
logger.info("test_cut_out")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
|
|
|
|
transforms_1 = [
|
|
f.Decode(),
|
|
f.ToTensor(),
|
|
f.RandomErasing(value='random')
|
|
]
|
|
transform_1 = f.ComposeOp(transforms_1)
|
|
data1 = data1.map(input_columns=["image"], operations=transform_1())
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
|
|
decode_op = c.Decode()
|
|
cut_out_op = c.CutOut(80, num_patches=10)
|
|
|
|
transforms_2 = [
|
|
decode_op,
|
|
cut_out_op
|
|
]
|
|
|
|
data2 = data2.map(input_columns=["image"], operations=transforms_2)
|
|
|
|
num_iter = 0
|
|
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
|
|
|
num_iter += 1
|
|
image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
# C image doesn't require transpose
|
|
image_2 = item2["image"]
|
|
|
|
logger.info("shape of image_1: {}".format(image_1.shape))
|
|
logger.info("shape of image_2: {}".format(image_2.shape))
|
|
|
|
logger.info("dtype of image_1: {}".format(image_1.dtype))
|
|
logger.info("dtype of image_2: {}".format(image_2.dtype))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_cut_out_op()
|
|
test_cut_out_op_multicut()
|