mindspore/tests/ut/python/dataset/test_center_crop.py

74 lines
2.5 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import mindspore.dataset.transforms.vision.c_transforms as vision
import numpy as np
import matplotlib.pyplot as plt
import mindspore.dataset as ds
from mindspore import log as logger
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def visualize(image_original, image_cropped):
"""
visualizes the image using DE op and Numpy op
"""
num = len(image_cropped)
for i in range(num):
plt.subplot(2, num, i + 1)
plt.imshow(image_original[i])
plt.title("Original image")
plt.subplot(2, num, i + num + 1)
plt.imshow(image_cropped[i])
plt.title("DE center_crop image")
plt.show()
def test_center_crop_op(height=375, width=375, plot=False):
"""
Test random_vertical
"""
logger.info("Test CenterCrop")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
decode_op = vision.Decode()
# 3 images [375, 500] [600, 500] [512, 512]
center_crop_op = vision.CenterCrop(height, width)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=center_crop_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
data2 = data2.map(input_columns=["image"], operations=decode_op)
image_cropped = []
image = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image_cropped.append(item1["image"].copy())
image.append(item2["image"].copy())
if plot:
visualize(image, image_cropped)
if __name__ == "__main__":
test_center_crop_op()
test_center_crop_op(600, 600)
test_center_crop_op(300, 600)
test_center_crop_op(600, 300)