mindspore/tests/st/gnn/test_gat_model.py

48 lines
1.5 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test gat model."""
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.common.api import _executor
from gat import GAT
context.set_context(mode=context.GRAPH_MODE)
def test_GAT():
ft_sizes = 1433
num_class = 7
num_nodes = 2708
hid_units = [8]
n_heads = [8, 1]
activation = nn.ELU()
residual = False
input_data = Tensor(
np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
net = GAT(ft_sizes,
num_class,
num_nodes,
hidden_units=hid_units,
num_heads=n_heads,
attn_drop=0.6,
ftr_drop=0.6,
activation=activation,
residual=residual)
_executor.compile(net, input_data, biases)