forked from mindspore-Ecosystem/mindspore
51 lines
1.6 KiB
Python
51 lines
1.6 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.select = P.Select()
|
|
|
|
def construct(self, cond_op, input_x, input_y):
|
|
return self.select(cond_op, input_x, input_y)
|
|
|
|
|
|
cond = np.array([[True, False], [True, False]]).astype(np.bool)
|
|
x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)
|
|
y = np.array([[1, 2], [3, 4.0]]).astype(np.float32)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_select():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
select = Net()
|
|
output = select(Tensor(cond), Tensor(x), Tensor(y))
|
|
expect = [[1.2, 2], [1, 4.0]]
|
|
error = np.ones(shape=[2, 2]) * 1.0e-6
|
|
diff = output.asnumpy() - expect
|
|
assert np.all(diff < error)
|
|
assert np.all(-diff < error)
|