forked from mindspore-Ecosystem/mindspore
181 lines
5.9 KiB
Python
181 lines
5.9 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.common.dtype as mstype
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.common.api import _cell_graph_executor
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
|
|
|
|
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b, sens):
|
|
return grad_all_with_sens(self.network)(x, y, b, sens)
|
|
|
|
|
|
class GradWrap2(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap2, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, b):
|
|
loss = self.network(x, y, b)
|
|
sens = P.Fill()(mstype.float32, P.Shape()(loss), 1.0)
|
|
return grad_all_with_sens(self.network)(x, y, b, sens)
|
|
|
|
|
|
class GradWrap3(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap3, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y, bias):
|
|
return grad_all(self.network)(x, y, bias)
|
|
|
|
class GradWrap4(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap4, self).__init__()
|
|
self.network = network
|
|
|
|
def construct(self, x, y):
|
|
return grad_all(self.network)(x, y)
|
|
|
|
def compile_net(net, x, y, b):
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_cell_graph_executor.compile(net, x, y, b)
|
|
|
|
def compile_net_no_bias(net, x, y):
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_cell_graph_executor.compile(net, x, y)
|
|
|
|
def test_no_grad():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul().shard(strategy1)
|
|
self.matmul2 = P.MatMul().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul1(x, y)
|
|
out = self.matmul2(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
|
|
strategy1 = ((4, 2), (2, 1))
|
|
strategy2 = ((2, 4), (4, 1))
|
|
net = Net(strategy1, strategy2)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_grad_sens_parameter_type():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul().shard(strategy1)
|
|
self.matmul2 = P.MatMul().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul1(x, y)
|
|
out = self.matmul2(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=64, global_rank=0)
|
|
strategy1 = ((8, 1), (1, 8))
|
|
strategy2 = ((8, 8), (8, 1))
|
|
net = GradWrap(Net(strategy1, strategy2))
|
|
|
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
|
|
sens = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_cell_graph_executor.compile(net, x, y, b, sens, phase='train', auto_parallel_mode=True)
|
|
x_layout = ([8, 8], [1, -1], [16, 32], 0, True, '')
|
|
y_layout = ([8, 8], [-1, 0], [32, 8], 0, True, '')
|
|
b_layout = ([8, 8], [0, -1], [8, 64], 0, True, '')
|
|
sens_layout = ([8, 8], [1, -1], [16, 64], 0, True, '')
|
|
expect_dict = {'x': x_layout, 'y': y_layout, 'b': b_layout, 'sens': sens_layout}
|
|
assert net.parameter_layout_dict == expect_dict
|
|
|
|
|
|
def test_grad_sens_tensor_type():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy1, strategy2):
|
|
super().__init__()
|
|
self.matmul1 = P.MatMul().shard(strategy1)
|
|
self.matmul2 = P.MatMul().shard(strategy2)
|
|
|
|
def construct(self, x, y, b):
|
|
out = self.matmul1(x, y)
|
|
out = self.matmul2(out, b)
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
|
|
strategy1 = ((4, 2), (2, 1))
|
|
strategy2 = ((2, 4), (4, 1))
|
|
net = GradWrap2(Net(strategy1, strategy2))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
compile_net(net, x, y, b)
|
|
|
|
|
|
def test_grad_sens_scalar_broadcast():
|
|
class Net(nn.Cell):
|
|
def __init__(self, strategy0, strategy1):
|
|
super().__init__()
|
|
self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=False).shard(strategy1)
|
|
|
|
def construct(self, x, y):
|
|
out = self.fc_nobias(x, y)
|
|
out = self.reduce_sum(out, (0, 1))
|
|
return out
|
|
|
|
context.set_auto_parallel_context(device_num=16, global_rank=0)
|
|
strategy0 = ((4, 1), (4, 1))
|
|
strategy1 = ((4, 1),)
|
|
net = GradWrap4(Net(strategy0, strategy1))
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
compile_net_no_bias(net, x, y)
|