mindspore/tests/ut/python/parallel/test_reluv2.py

77 lines
2.5 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
import mindspore.context as context
from mindspore import Tensor, Parameter
import mindspore.nn as nn
from mindspore.common.api import _cell_graph_executor
from mindspore.nn import TrainOneStepCell, Momentum
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self, mul_weight, strategy=None):
super(Net, self).__init__()
self.reluv2 = P.ReLUV2().shard(strategy)
self.mul = P.Mul()
self.weight = Parameter(mul_weight, "w1")
def construct(self, x):
out = self.mul(x, self.weight)
output, _ = self.reluv2(out)
return output
_w1 = Tensor(np.ones([32, 16, 48, 64]), dtype=ms.float32)
_x = Tensor(np.ones([32, 16, 48, 64]), dtype=ms.float32)
def compile_net(net):
context.set_context(mode=context.GRAPH_MODE)
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_cell_graph_executor.compile(train_net, _x)
context.reset_auto_parallel_context()
def test_reluv2():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy = ((2, 1, 2, 2),)
net = Net(_w1, strategy)
compile_net(net)
def test_reluv2_no_full():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy = ((2, 1, 2, 1),)
net = Net(_w1, strategy)
compile_net(net)
def test_reluv2_no_strategy():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy = None
net = Net(_w1, strategy)
compile_net(net)
def test_reluv2_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net(_w1)
compile_net(net)