forked from mindspore-Ecosystem/mindspore
278 lines
10 KiB
Python
278 lines
10 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import mindspore as ms
|
|
import mindspore.context as context
|
|
from mindspore import Tensor, Parameter
|
|
import mindspore.nn as nn
|
|
from mindspore.common.api import _cell_graph_executor
|
|
from mindspore.nn import TrainOneStepCell, Momentum
|
|
from mindspore.ops import operations as P
|
|
from mindspore.nn import Dense, Flatten
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, weight1, weight2, axis=0, strategy1=None, strategy2=None, is_parameter=True):
|
|
super(Net, self).__init__()
|
|
self.pack = P.Stack(axis=axis).shard(strategy1)
|
|
self.mul = P.Mul().shard(strategy2)
|
|
if is_parameter:
|
|
self.weight1 = Parameter(weight1, "w1")
|
|
else:
|
|
self.weight1 = weight1
|
|
self.weight2 = Parameter(weight2, "w2")
|
|
|
|
def construct(self, x):
|
|
out = self.pack([self.weight1, self.weight2])
|
|
out = self.mul(x, out)
|
|
return out
|
|
|
|
|
|
class Net1(nn.Cell):
|
|
def __init__(self, weight1, weight2, axis=0, strategy1=None, strategy2=None):
|
|
super(Net1, self).__init__()
|
|
self.pack = P.Stack(axis=axis).shard(strategy1)
|
|
self.mul = P.Mul().shard(strategy2)
|
|
self.weight1 = Parameter(weight1, "w1")
|
|
self.weight2 = Parameter(weight2, "w2")
|
|
|
|
def construct(self, x):
|
|
out = self.mul(x, self.weight1)
|
|
out = self.pack([out, self.weight2])
|
|
return out
|
|
|
|
|
|
class Net2(nn.Cell):
|
|
def __init__(self, weight1, weight2, weight3, axis=0, strategy1=None, strategy2=None, is_parameter=True):
|
|
super(Net2, self).__init__()
|
|
self.pack = P.Stack(axis=axis).shard(strategy1)
|
|
self.mul = P.Mul().shard(strategy2)
|
|
if is_parameter:
|
|
self.weight1 = Parameter(weight1, "w1")
|
|
else:
|
|
self.weight1 = weight1
|
|
self.weight2 = Parameter(weight2, "w2")
|
|
self.weight3 = Parameter(weight2, "w3")
|
|
|
|
def construct(self, x):
|
|
out = self.pack([self.weight1, self.weight2, self.weight3])
|
|
out = self.mul(x, out)
|
|
return out
|
|
|
|
|
|
class PackConstantNet1(nn.Cell):
|
|
def __init__(self, dense_in_channel, dense_out_channel, axis=0, shape=None, strategy=None):
|
|
super().__init__()
|
|
weight_np = np.full((dense_out_channel, dense_in_channel), 0.01, dtype=np.float32)
|
|
bias_np = np.full((dense_out_channel), 0.01, dtype=np.float32)
|
|
self.pack_con = Tensor(np.full(shape, 0.01, dtype=np.float32))
|
|
self.flat = Flatten()
|
|
self.dense = Dense(in_channels=dense_in_channel,
|
|
out_channels=dense_out_channel,
|
|
weight_init=Tensor(weight_np),
|
|
bias_init=Tensor(bias_np),
|
|
has_bias=True)
|
|
self.mul = P.Mul()
|
|
self.pack = P.Stack(axis)
|
|
if strategy is not None:
|
|
self.pack.shard(strategy)
|
|
|
|
def construct(self, inputs):
|
|
x = self.pack([self.pack_con, self.pack_con, self.pack_con, self.pack_con,
|
|
self.pack_con, self.pack_con, self.pack_con, self.pack_con])
|
|
x1 = self.flat(x)
|
|
x2 = self.flat(inputs)
|
|
x = self.mul(x1, x2)
|
|
x = self.dense(x)
|
|
return x
|
|
|
|
|
|
class PackConstantNet2(nn.Cell):
|
|
def __init__(self, dense_in_channel, dense_out_channel, axis=0, shape=None, strategy=None):
|
|
super().__init__()
|
|
weight_np = np.full((dense_out_channel, dense_in_channel), 0.01, dtype=np.float32)
|
|
bias_np = np.full((dense_out_channel), 0.01, dtype=np.float32)
|
|
self.pack_con = Tensor(np.full(shape, 0.01, dtype=np.float32))
|
|
self.flat = Flatten()
|
|
self.dense = Dense(in_channels=dense_in_channel,
|
|
out_channels=dense_out_channel,
|
|
weight_init=Tensor(weight_np),
|
|
bias_init=Tensor(bias_np),
|
|
has_bias=True)
|
|
self.mul = P.Mul()
|
|
self.pack = P.Stack(axis)
|
|
if strategy is not None:
|
|
self.pack.shard(strategy)
|
|
|
|
def construct(self, inputs):
|
|
x = self.pack((self.pack_con, self.pack_con, self.pack_con, self.pack_con,
|
|
self.pack_con, self.pack_con, self.pack_con, self.pack_con))
|
|
x1 = self.flat(x)
|
|
x2 = self.flat(inputs)
|
|
x = self.mul(x1, x2)
|
|
x = self.dense(x)
|
|
return x
|
|
|
|
|
|
_w1 = Tensor(np.ones([48, 64]), dtype=ms.float32)
|
|
_w2 = Tensor(np.ones([48, 64]), dtype=ms.float32)
|
|
_w3 = Tensor(np.ones([48, 64]), dtype=ms.float32)
|
|
_x = Tensor(np.ones([2, 48, 64]), dtype=ms.float32)
|
|
_x1 = Tensor(np.ones([48, 64]), dtype=ms.float32)
|
|
_x2 = Tensor(np.ones([3, 48, 64]), dtype=ms.float32)
|
|
_x_c = Tensor(np.ones([8, 8, 8]), dtype=ms.float32)
|
|
|
|
|
|
def compile_net(net):
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
train_net = TrainOneStepCell(net, optimizer)
|
|
train_net.set_auto_parallel()
|
|
train_net.set_train()
|
|
_cell_graph_executor.compile(train_net, _x)
|
|
context.reset_auto_parallel_context()
|
|
|
|
|
|
def compile_net1(net):
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
train_net = TrainOneStepCell(net, optimizer)
|
|
train_net.set_auto_parallel()
|
|
train_net.set_train()
|
|
_cell_graph_executor.compile(train_net, _x1)
|
|
context.reset_auto_parallel_context()
|
|
|
|
|
|
def compile_net2(net):
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
train_net = TrainOneStepCell(net, optimizer)
|
|
train_net.set_auto_parallel()
|
|
train_net.set_train()
|
|
_cell_graph_executor.compile(train_net, _x2)
|
|
context.reset_auto_parallel_context()
|
|
|
|
|
|
def compile_net_con(net):
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
train_net = TrainOneStepCell(net, optimizer)
|
|
train_net.set_auto_parallel()
|
|
_cell_graph_executor.compile(train_net, _x_c)
|
|
context.reset_auto_parallel_context()
|
|
|
|
|
|
def test_pack_parameter():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
strategy1 = ((4, 2), (4, 2))
|
|
strategy2 = ((1, 4, 2), (1, 4, 2))
|
|
net = Net(_w1, _w2, 0, strategy1, strategy2)
|
|
compile_net(net)
|
|
|
|
|
|
def test_pack_parameter_no_full_split():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((1, 4, 2), (1, 4, 2))
|
|
net = Net(_w1, _w2, 0, strategy1, strategy2)
|
|
compile_net(net)
|
|
|
|
|
|
def test_pack_tensor_and_parameter():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
strategy1 = ((4, 2), (4, 2))
|
|
strategy2 = ((1, 4, 2), (1, 4, 2))
|
|
net = Net(_w1, _w2, 0, strategy1, strategy2, False)
|
|
compile_net(net)
|
|
|
|
|
|
def test_pack_output():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
strategy1 = ((4, 2), (4, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = Net1(_w1, _w2, 0, strategy1, strategy2)
|
|
compile_net1(net)
|
|
|
|
|
|
def test_pack_output_axis1():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
strategy1 = ((4, 2), (4, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = Net1(_w1, _w2, 1, strategy1, strategy2)
|
|
compile_net1(net)
|
|
|
|
|
|
def test_pack_output_no_full_split():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
strategy1 = ((2, 2), (2, 2))
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = Net1(_w1, _w2, 0, strategy1, strategy2)
|
|
compile_net1(net)
|
|
|
|
|
|
def test_pack_no_strategy():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
strategy1 = None
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = Net1(_w1, _w2, 0, strategy1, strategy2)
|
|
compile_net1(net)
|
|
|
|
|
|
def test_pack_no_strategy_axis1():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
strategy1 = None
|
|
strategy2 = ((4, 2), (4, 2))
|
|
net = Net1(_w1, _w2, 1, strategy1, strategy2)
|
|
compile_net1(net)
|
|
|
|
|
|
def test_pack_auto_parallel():
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
|
net = Net1(_w1, _w2, 0)
|
|
compile_net1(net)
|
|
|
|
|
|
def test_pack_auto_parallel_axis1():
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
|
net = Net1(_w1, _w2, 1)
|
|
compile_net1(net)
|
|
|
|
|
|
def test_pack_auto_parallel_3_tensor():
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
|
net = Net2(_w1, _w2, _w3)
|
|
compile_net2(net)
|
|
|
|
|
|
def test_pack_constant1():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
net = PackConstantNet1(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8),
|
|
strategy=((4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1)))
|
|
compile_net_con(net)
|
|
|
|
|
|
def test_pack_constant2():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
|
net = PackConstantNet2(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8),
|
|
strategy=((4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1)))
|
|
compile_net_con(net)
|
|
|
|
|
|
def test_pack_auto_constant():
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
|
net = PackConstantNet1(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8),
|
|
strategy=((8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1)))
|
|
compile_net_con(net)
|