forked from mindspore-Ecosystem/mindspore
65 lines
2.3 KiB
Python
65 lines
2.3 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import mindspore as ms
|
|
import mindspore.context as context
|
|
from mindspore import Tensor, Parameter
|
|
import mindspore.nn as nn
|
|
from mindspore.common.api import _cell_graph_executor
|
|
from mindspore.nn import TrainOneStepCell, Momentum
|
|
from mindspore.ops import operations as P
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, wi, stra1=None, stra2=None, stra3=None):
|
|
super(Net, self).__init__()
|
|
self.wi = Parameter(wi, "wi")
|
|
self.matmul = P.MatMul().shard(stra1)
|
|
self.onehot = P.OneHot(axis=-1).shard(stra2)
|
|
self.mul = P.Mul().shard(stra3)
|
|
self.on_value = Tensor(1.0, ms.float32)
|
|
self.off_value = Tensor(0.0, ms.float32)
|
|
self.cast = P.Cast()
|
|
self.depth = 48
|
|
|
|
def construct(self, x):
|
|
output = self.matmul(x, self.wi)
|
|
output = self.cast(output, ms.int32)
|
|
output = self.onehot(output, self.depth, self.on_value, self.off_value)
|
|
output = self.mul(output, output)
|
|
return output
|
|
|
|
_x = Tensor(np.ones([16, 48]), dtype=ms.float32)
|
|
_wi = Tensor(np.ones([48, 16]), dtype=ms.float32)
|
|
|
|
|
|
def compile_net(net):
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
train_net = TrainOneStepCell(net, optimizer)
|
|
train_net.set_auto_parallel()
|
|
train_net.set_train()
|
|
_cell_graph_executor.compile(train_net, _x)
|
|
context.reset_auto_parallel_context()
|
|
|
|
|
|
def test_onehot():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, enable_alltoall=True,
|
|
global_rank=0)
|
|
stra1 = ((8, 1), (1, 1))
|
|
stra2 = ((8, 1, 1), (), ())
|
|
stra3 = ((8, 1, 1), (8, 1, 1))
|
|
net = Net(_wi, stra1=stra1, stra2=stra2, stra3=stra3)
|
|
compile_net(net)
|