mindspore/tests/ut/python/parallel/test_onehot_2dim.py

65 lines
2.3 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.context as context
from mindspore import Tensor, Parameter
import mindspore.nn as nn
from mindspore.common.api import _cell_graph_executor
from mindspore.nn import TrainOneStepCell, Momentum
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self, wi, stra1=None, stra2=None, stra3=None):
super(Net, self).__init__()
self.wi = Parameter(wi, "wi")
self.matmul = P.MatMul().shard(stra1)
self.onehot = P.OneHot(axis=-1).shard(stra2)
self.mul = P.Mul().shard(stra3)
self.on_value = Tensor(1.0, ms.float32)
self.off_value = Tensor(0.0, ms.float32)
self.cast = P.Cast()
self.depth = 48
def construct(self, x):
output = self.matmul(x, self.wi)
output = self.cast(output, ms.int32)
output = self.onehot(output, self.depth, self.on_value, self.off_value)
output = self.mul(output, output)
return output
_x = Tensor(np.ones([16, 48]), dtype=ms.float32)
_wi = Tensor(np.ones([48, 16]), dtype=ms.float32)
def compile_net(net):
context.set_context(mode=context.GRAPH_MODE)
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_cell_graph_executor.compile(train_net, _x)
context.reset_auto_parallel_context()
def test_onehot():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, enable_alltoall=True,
global_rank=0)
stra1 = ((8, 1), (1, 1))
stra2 = ((8, 1, 1), (), ())
stra3 = ((8, 1, 1), (8, 1, 1))
net = Net(_wi, stra1=stra1, stra2=stra2, stra3=stra3)
compile_net(net)