forked from mindspore-Ecosystem/mindspore
121 lines
3.8 KiB
Python
121 lines
3.8 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
from mindspore import context, Tensor, Parameter
|
|
from mindspore.nn import Cell, Momentum
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
|
from mindspore.ops import operations as P
|
|
from mindspore.train import Model
|
|
from tests.dataset_mock import MindData
|
|
|
|
|
|
class Dataset(MindData):
|
|
def __init__(self, predict, label, length=3):
|
|
super(Dataset, self).__init__(size=length)
|
|
self.predict = predict
|
|
self.label = label
|
|
self.index = 0
|
|
self.length = length
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.index >= self.length:
|
|
raise StopIteration
|
|
self.index += 1
|
|
return self.predict, self.label
|
|
|
|
def reset(self):
|
|
self.index = 0
|
|
|
|
|
|
class Net(Cell):
|
|
def __init__(self, mul_weight, strategy1=None, strategy2=None):
|
|
super().__init__()
|
|
self.mul = P.Mul().shard(strategy1)
|
|
self.neg = P.Neg().shard(strategy2)
|
|
self.mul_weight = Parameter(mul_weight, "w1")
|
|
|
|
def construct(self, x):
|
|
out = self.mul(x, self.mul_weight)
|
|
out = self.neg(out)
|
|
return out
|
|
|
|
|
|
_x = Tensor(np.ones([32, 128]), dtype=ms.float32)
|
|
_b = Tensor(np.ones([32]), dtype=ms.int32)
|
|
_w1 = Tensor(np.ones([512, 128]), dtype=ms.float32)
|
|
|
|
|
|
def compile_net(net):
|
|
learning_rate = 0.1
|
|
momentum = 0.9
|
|
epoch_size = 2
|
|
dataset = Dataset(_x, _b)
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
|
model = Model(net, loss, optimizer=opt)
|
|
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
|
context.reset_auto_parallel_context()
|
|
|
|
|
|
def test_neg_data_parallel():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
strategy1 = ((16, 1), (16, 1))
|
|
strategy2 = ((16, 1),)
|
|
net = Net(_w1, strategy1, strategy2)
|
|
compile_net(net)
|
|
|
|
|
|
def test_neg_model_parallel():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
strategy1 = ((1, 16), (1, 16))
|
|
strategy2 = ((1, 16),)
|
|
net = Net(_w1, strategy1, strategy2)
|
|
compile_net(net)
|
|
|
|
|
|
def test_neg_hybrid_parallel():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
strategy1 = ((4, 4), (4, 4))
|
|
strategy2 = ((4, 4),)
|
|
net = Net(_w1, strategy1, strategy2)
|
|
compile_net(net)
|
|
|
|
|
|
def test_neg_auto_parallel():
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
|
|
net = Net(_w1)
|
|
compile_net(net)
|
|
|
|
|
|
def test_neg_repeat_calc():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
strategy1 = ((4, 4), (4, 4))
|
|
strategy2 = ((2, 2),)
|
|
net = Net(_w1, strategy1, strategy2)
|
|
compile_net(net)
|
|
|
|
|
|
def test_neg_repeat_calc2():
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
|
strategy1 = ((4, 2), (4, 2))
|
|
strategy2 = ((4, 4),)
|
|
net = Net(_w1, strategy1, strategy2)
|
|
compile_net(net)
|