mindspore/tests/ut/python/parallel/test_model_with_loss.py

121 lines
3.8 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, Momentum
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.ops import operations as P
from mindspore.train import Model
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class Net(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.neg = P.Neg().shard(strategy2)
self.mul_weight = Parameter(mul_weight, "w1")
def construct(self, x):
out = self.mul(x, self.mul_weight)
out = self.neg(out)
return out
_x = Tensor(np.ones([32, 128]), dtype=ms.float32)
_b = Tensor(np.ones([32]), dtype=ms.int32)
_w1 = Tensor(np.ones([512, 128]), dtype=ms.float32)
def compile_net(net):
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
dataset = Dataset(_x, _b)
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, loss, optimizer=opt)
model.train(epoch_size, dataset, dataset_sink_mode=False)
context.reset_auto_parallel_context()
def test_neg_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((16, 1), (16, 1))
strategy2 = ((16, 1),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_model_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((1, 16), (1, 16))
strategy2 = ((1, 16),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_hybrid_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 4), (4, 4))
strategy2 = ((4, 4),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Net(_w1)
compile_net(net)
def test_neg_repeat_calc():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 4), (4, 4))
strategy2 = ((2, 2),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_repeat_calc2():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 2), (4, 2))
strategy2 = ((4, 4),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)