mindspore/tests/ut/python/parallel/test_micro_batch_interleave...

72 lines
2.4 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor, context
from mindspore.ops import operations as P
from mindspore.common.api import _cell_graph_executor
from mindspore.nn.wrap.cell_wrapper import MicroBatchInterleaved
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul1(x, y)
out = self.matmul2(out, b)
return out
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = P.ReLU()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
def compile_net(net, x, y, b):
net.set_auto_parallel()
net.set_train()
_cell_graph_executor.compile(net, x, y, b)
def test_micro_batch_interleaved():
"""
Feature: test MicroBatchInterleaved in auto parallel.
Description: net with MicroBatchInterleaved in semi auto parallel.
Expectation: compile done without error.
"""
context.set_context(mode=context.GRAPH_MODE)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_auto_parallel_context(device_num=8, global_rank=0, gradients_mean=True)
strategy1 = ((4, 2), (2, 1))
strategy2 = ((2, 4), (4, 1))
micro_batch_interleaved = 2
net = MicroBatchInterleaved(NetWithLoss(Net(strategy1, strategy2)), micro_batch_interleaved)
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32 * micro_batch_interleaved, 64]), dtype=ms.float32)
b = Tensor(np.ones([64 * micro_batch_interleaved, 64]), dtype=ms.float32)
compile_net(net, x, y, b)