forked from mindspore-Ecosystem/mindspore
87 lines
2.9 KiB
Python
87 lines
2.9 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
from mindspore import context, Tensor, Parameter
|
|
from mindspore.common.api import _cell_graph_executor
|
|
from mindspore.nn import Cell
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
class Net(Cell):
|
|
def __init__(self, mul_weight, strategy1=None, strategy2=None):
|
|
super().__init__()
|
|
self.mul = P.Mul().shard(strategy1)
|
|
self.neg = P.Neg().shard(strategy2)
|
|
self.mul_weight = Parameter(mul_weight, "w1")
|
|
|
|
def construct(self, x, b):
|
|
out = self.mul(x, self.mul_weight)
|
|
out = self.neg(out)
|
|
return out
|
|
|
|
|
|
class EvalNet(Cell):
|
|
def __init__(self, network, strategy2=None):
|
|
super().__init__()
|
|
self.network = network
|
|
self.relu = P.ReLU().shard(strategy2)
|
|
|
|
def construct(self, x, b):
|
|
out = self.network(x, b)
|
|
out1 = self.relu(out)
|
|
return out, out1
|
|
|
|
|
|
_x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
_w1 = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
_b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
|
|
|
|
def test_train_and_eval():
|
|
context.set_context(mode=0)
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16)
|
|
strategy1 = ((4, 4), (4, 4))
|
|
strategy2 = ((4, 4),)
|
|
net = Net(_w1, strategy1, strategy2)
|
|
eval_net = EvalNet(net, strategy2=strategy2)
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_cell_graph_executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True)
|
|
|
|
eval_net.set_train(mode=False)
|
|
eval_net.set_auto_parallel()
|
|
_cell_graph_executor.compile(eval_net, _x, _b, phase='eval', auto_parallel_mode=True)
|
|
|
|
context.reset_auto_parallel_context()
|
|
|
|
def test_train_and_eval_auto():
|
|
context.set_context(mode=0)
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16)
|
|
strategy1 = ((4, 4), (4, 4))
|
|
strategy2 = ((4, 4),)
|
|
net = Net(_w1, strategy1, strategy2)
|
|
eval_net = EvalNet(net, strategy2=strategy2)
|
|
net.set_auto_parallel()
|
|
net.set_train()
|
|
_cell_graph_executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True)
|
|
|
|
eval_net.set_train(mode=False)
|
|
eval_net.set_auto_parallel()
|
|
_cell_graph_executor.compile(eval_net, _x, _b, phase='eval', auto_parallel_mode=True)
|
|
|
|
context.reset_auto_parallel_context()
|