mindspore/tests/ut/python/parallel/test_eval.py

87 lines
2.9 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.common.api import _cell_graph_executor
from mindspore.nn import Cell
from mindspore.ops import operations as P
class Net(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.neg = P.Neg().shard(strategy2)
self.mul_weight = Parameter(mul_weight, "w1")
def construct(self, x, b):
out = self.mul(x, self.mul_weight)
out = self.neg(out)
return out
class EvalNet(Cell):
def __init__(self, network, strategy2=None):
super().__init__()
self.network = network
self.relu = P.ReLU().shard(strategy2)
def construct(self, x, b):
out = self.network(x, b)
out1 = self.relu(out)
return out, out1
_x = Tensor(np.ones([64, 64]), dtype=ms.float32)
_w1 = Tensor(np.ones([64, 64]), dtype=ms.float32)
_b = Tensor(np.ones([64, 64]), dtype=ms.float32)
def test_train_and_eval():
context.set_context(mode=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16)
strategy1 = ((4, 4), (4, 4))
strategy2 = ((4, 4),)
net = Net(_w1, strategy1, strategy2)
eval_net = EvalNet(net, strategy2=strategy2)
net.set_auto_parallel()
net.set_train()
_cell_graph_executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True)
eval_net.set_train(mode=False)
eval_net.set_auto_parallel()
_cell_graph_executor.compile(eval_net, _x, _b, phase='eval', auto_parallel_mode=True)
context.reset_auto_parallel_context()
def test_train_and_eval_auto():
context.set_context(mode=0)
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16)
strategy1 = ((4, 4), (4, 4))
strategy2 = ((4, 4),)
net = Net(_w1, strategy1, strategy2)
eval_net = EvalNet(net, strategy2=strategy2)
net.set_auto_parallel()
net.set_train()
_cell_graph_executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True)
eval_net.set_train(mode=False)
eval_net.set_auto_parallel()
_cell_graph_executor.compile(eval_net, _x, _b, phase='eval', auto_parallel_mode=True)
context.reset_auto_parallel_context()