forked from mindspore-Ecosystem/mindspore
72 lines
2.5 KiB
Python
72 lines
2.5 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""test lenet"""
|
|
import numpy as np
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.common.api import _cell_graph_executor
|
|
from mindspore.ops import operations as P
|
|
from ....train_step_wrap import train_step_with_loss_warp, train_step_with_sens
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
"""LeNet5 definition"""
|
|
|
|
def __init__(self):
|
|
super(LeNet5, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid')
|
|
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
|
|
self.fc1 = nn.Dense(16 * 5 * 5, 120)
|
|
self.fc2 = nn.Dense(120, 84)
|
|
self.fc3 = nn.Dense(84, 10)
|
|
self.relu = nn.ReLU()
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.flatten = P.Flatten()
|
|
|
|
def construct(self, x):
|
|
x = self.max_pool2d(self.relu(self.conv1(x)))
|
|
x = self.max_pool2d(self.relu(self.conv2(x)))
|
|
x = self.flatten(x)
|
|
x = self.relu(self.fc1(x))
|
|
x = self.relu(self.fc2(x))
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
|
|
def test_lenet5_train_step():
|
|
predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
|
|
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
|
net = train_step_with_loss_warp(LeNet5())
|
|
_cell_graph_executor.compile(net, predict, label)
|
|
|
|
|
|
def test_lenet5_train_sens():
|
|
predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
|
|
sens = Tensor(np.ones([1, 10]).astype(np.float32))
|
|
net = train_step_with_sens(LeNet5(), sens)
|
|
_cell_graph_executor.compile(net, predict)
|
|
|
|
|
|
def test_lenet5_train_step_training():
|
|
predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
|
|
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
|
net = train_step_with_loss_warp(LeNet5())
|
|
net.set_train()
|
|
_cell_graph_executor.compile(net, predict, label)
|