mindspore/tests/ut/python/model/test_lenet.py

72 lines
2.5 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test lenet"""
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import _cell_graph_executor
from mindspore.ops import operations as P
from ....train_step_wrap import train_step_with_loss_warp, train_step_with_sens
context.set_context(mode=context.GRAPH_MODE)
class LeNet5(nn.Cell):
"""LeNet5 definition"""
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = P.Flatten()
def construct(self, x):
x = self.max_pool2d(self.relu(self.conv1(x)))
x = self.max_pool2d(self.relu(self.conv2(x)))
x = self.flatten(x)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
def test_lenet5_train_step():
predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = train_step_with_loss_warp(LeNet5())
_cell_graph_executor.compile(net, predict, label)
def test_lenet5_train_sens():
predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
sens = Tensor(np.ones([1, 10]).astype(np.float32))
net = train_step_with_sens(LeNet5(), sens)
_cell_graph_executor.compile(net, predict)
def test_lenet5_train_step_training():
predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = train_step_with_loss_warp(LeNet5())
net.set_train()
_cell_graph_executor.compile(net, predict, label)