mindspore/tests/ut/python/ir/test_tensor_py.py

150 lines
3.5 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test tensor py"""
import numpy as np
import mindspore as ms
from mindspore.common.api import _executor
from mindspore.nn import Cell
from mindspore.ops import operations as P
from ..ut_filter import non_graph_engine
def _attribute(tensor, shape_, size_, dtype_):
result = (tensor.shape == shape_) and \
(tensor.size() == size_) and \
(tensor.dtype == dtype_)
return result
def test_tensor_init():
nparray = np.ones([2, 2], np.float32)
ms.Tensor(nparray)
ms.Tensor(nparray, dtype=ms.float32)
@non_graph_engine
def test_tensor_add():
a = ms.Tensor(np.ones([3, 3], np.float32))
b = ms.Tensor(np.ones([3, 3], np.float32))
a += b
@non_graph_engine
def test_tensor_sub():
a = ms.Tensor(np.ones([2, 3]))
b = ms.Tensor(np.ones([2, 3]))
b -= a
@non_graph_engine
def test_tensor_mul():
a = ms.Tensor(np.ones([3, 3]))
b = ms.Tensor(np.ones([3, 3]))
a *= b
def test_tensor_dim():
arr = np.ones((1, 6))
b = ms.Tensor(arr)
assert b.dim() == 2
def test_tensor_size():
arr = np.ones((1, 6))
b = ms.Tensor(arr)
assert arr.size == b.size()
def test_dtype():
a = ms.Tensor(np.ones((2, 3), dtype=np.int32))
assert a.dtype == ms.int32
def test_asnumpy():
npd = np.ones((2, 3))
a = ms.Tensor(npd)
a.set_dtype(ms.int32)
assert a.asnumpy().all() == npd.all()
def test_print():
a = ms.Tensor(np.ones((2, 3)))
a.set_dtype(ms.int32)
print(a)
def test_float():
a = ms.Tensor(np.ones((2, 3)), ms.float16)
assert a.dtype == ms.float16
def test_tensor_method_sub():
"""test_tensor_method_sub"""
class Net(Cell):
def __init__(self):
super(Net, self).__init__()
self.sub = P.Sub()
def construct(self, x, y):
out = x - y
return out.transpose()
net = Net()
x = ms.Tensor(np.ones([5, 3], np.float32))
y = ms.Tensor(np.ones([8, 5, 3], np.float32))
_executor.compile(net, x, y)
def test_tensor_method_mul():
"""test_tensor_method_mul"""
class Net(Cell):
def __init__(self):
super(Net, self).__init__()
self.sub = P.Sub()
def construct(self, x, y):
out = x * (-y)
return out.transpose()
net = Net()
x = ms.Tensor(np.ones([5, 3], np.float32))
y = ms.Tensor(np.ones([8, 5, 3], np.float32))
_executor.compile(net, x, y)
def test_tensor_method_div():
"""test_tensor_method_div"""
class Net(Cell):
def __init__(self):
super(Net, self).__init__()
self.sub = P.Sub()
def construct(self, x, y):
out = x / y
return out.transpose()
net = Net()
x = ms.Tensor(np.ones([5, 3], np.float32))
y = ms.Tensor(np.ones([8, 5, 3], np.float32))
_executor.compile(net, x, y)