forked from mindspore-Ecosystem/mindspore
150 lines
3.5 KiB
Python
150 lines
3.5 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""test tensor py"""
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
from mindspore.common.api import _executor
|
|
from mindspore.nn import Cell
|
|
from mindspore.ops import operations as P
|
|
from ..ut_filter import non_graph_engine
|
|
|
|
|
|
def _attribute(tensor, shape_, size_, dtype_):
|
|
result = (tensor.shape == shape_) and \
|
|
(tensor.size() == size_) and \
|
|
(tensor.dtype == dtype_)
|
|
return result
|
|
|
|
|
|
def test_tensor_init():
|
|
nparray = np.ones([2, 2], np.float32)
|
|
ms.Tensor(nparray)
|
|
|
|
ms.Tensor(nparray, dtype=ms.float32)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_tensor_add():
|
|
a = ms.Tensor(np.ones([3, 3], np.float32))
|
|
b = ms.Tensor(np.ones([3, 3], np.float32))
|
|
a += b
|
|
|
|
|
|
@non_graph_engine
|
|
def test_tensor_sub():
|
|
a = ms.Tensor(np.ones([2, 3]))
|
|
b = ms.Tensor(np.ones([2, 3]))
|
|
b -= a
|
|
|
|
|
|
@non_graph_engine
|
|
def test_tensor_mul():
|
|
a = ms.Tensor(np.ones([3, 3]))
|
|
b = ms.Tensor(np.ones([3, 3]))
|
|
a *= b
|
|
|
|
|
|
def test_tensor_dim():
|
|
arr = np.ones((1, 6))
|
|
b = ms.Tensor(arr)
|
|
assert b.dim() == 2
|
|
|
|
|
|
def test_tensor_size():
|
|
arr = np.ones((1, 6))
|
|
b = ms.Tensor(arr)
|
|
assert arr.size == b.size()
|
|
|
|
|
|
def test_dtype():
|
|
a = ms.Tensor(np.ones((2, 3), dtype=np.int32))
|
|
assert a.dtype == ms.int32
|
|
|
|
|
|
def test_asnumpy():
|
|
npd = np.ones((2, 3))
|
|
a = ms.Tensor(npd)
|
|
a.set_dtype(ms.int32)
|
|
assert a.asnumpy().all() == npd.all()
|
|
|
|
|
|
def test_print():
|
|
a = ms.Tensor(np.ones((2, 3)))
|
|
a.set_dtype(ms.int32)
|
|
print(a)
|
|
|
|
|
|
def test_float():
|
|
a = ms.Tensor(np.ones((2, 3)), ms.float16)
|
|
assert a.dtype == ms.float16
|
|
|
|
|
|
def test_tensor_method_sub():
|
|
"""test_tensor_method_sub"""
|
|
|
|
class Net(Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.sub = P.Sub()
|
|
|
|
def construct(self, x, y):
|
|
out = x - y
|
|
return out.transpose()
|
|
|
|
net = Net()
|
|
|
|
x = ms.Tensor(np.ones([5, 3], np.float32))
|
|
y = ms.Tensor(np.ones([8, 5, 3], np.float32))
|
|
_executor.compile(net, x, y)
|
|
|
|
|
|
def test_tensor_method_mul():
|
|
"""test_tensor_method_mul"""
|
|
|
|
class Net(Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.sub = P.Sub()
|
|
|
|
def construct(self, x, y):
|
|
out = x * (-y)
|
|
return out.transpose()
|
|
|
|
net = Net()
|
|
|
|
x = ms.Tensor(np.ones([5, 3], np.float32))
|
|
y = ms.Tensor(np.ones([8, 5, 3], np.float32))
|
|
_executor.compile(net, x, y)
|
|
|
|
|
|
def test_tensor_method_div():
|
|
"""test_tensor_method_div"""
|
|
|
|
class Net(Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.sub = P.Sub()
|
|
|
|
def construct(self, x, y):
|
|
out = x / y
|
|
return out.transpose()
|
|
|
|
net = Net()
|
|
|
|
x = ms.Tensor(np.ones([5, 3], np.float32))
|
|
y = ms.Tensor(np.ones([8, 5, 3], np.float32))
|
|
_executor.compile(net, x, y)
|