mindspore/tests/ut/python/exec/resnet_example.py

244 lines
7.4 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
resnet50 example
"""
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from ..ut_filter import non_graph_engine
def conv3x3(in_channels, out_channels, stride=1, padding=1):
"""3x3 convolution """
weight = Tensor(np.ones([out_channels, in_channels, 3, 3]).astype(np.float32) * 0.01)
return nn.Conv2d(in_channels, out_channels,
kernel_size=3, stride=stride, padding=padding, weight_init=weight)
def conv1x1(in_channels, out_channels, stride=1, padding=0):
"""1x1 convolution"""
weight = Tensor(np.ones([out_channels, in_channels, 1, 1]).astype(np.float32) * 0.01)
return nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=stride, padding=padding, weight_init=weight)
def bn_with_initialize(out_channels):
shape = (out_channels)
mean = Tensor(np.ones(shape).astype(np.float32) * 0.01)
var = Tensor(np.ones(shape).astype(np.float32) * 0.01)
beta = Tensor(np.ones(shape).astype(np.float32) * 0.01)
gamma = Tensor(np.ones(shape).astype(np.float32) * 0.01)
return nn.BatchNorm2d(num_features=out_channels,
beta_init=beta,
gamma_init=gamma,
moving_mean_init=mean,
moving_var_init=var)
class ResidualBlock(nn.Cell):
"""
residual Block
"""
expansion = 4
def __init__(self,
in_channels,
out_channels,
stride=1,
down_sample=False):
super(ResidualBlock, self).__init__()
out_chls = out_channels // self.expansion
self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
self.bn1 = bn_with_initialize(out_chls)
self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=1)
self.bn2 = bn_with_initialize(out_chls)
self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
self.bn3 = bn_with_initialize(out_channels)
self.relu = nn.ReLU()
self.downsample = down_sample
self.conv_down_sample = conv1x1(in_channels, out_channels,
stride=stride, padding=0)
self.bn_down_sample = bn_with_initialize(out_channels)
self.add = P.TensorAdd()
def construct(self, x):
"""
:param x:
:return:
"""
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample:
identity = self.conv_down_sample(identity)
identity = self.bn_down_sample(identity)
out = self.add(out, identity)
out = self.relu(out)
return out
class MakeLayer3(nn.Cell):
"""
make resnet50 3 layers
"""
def __init__(self, block, in_channels, out_channels, stride):
super(MakeLayer3, self).__init__()
self.block_down_sample = block(in_channels, out_channels,
stride=stride, down_sample=True)
self.block1 = block(out_channels, out_channels, stride=1)
self.block2 = block(out_channels, out_channels, stride=1)
def construct(self, x):
x = self.block_down_sample(x)
x = self.block1(x)
x = self.block2(x)
return x
class MakeLayer4(nn.Cell):
"""
make resnet50 4 layers
"""
def __init__(self, block, in_channels, out_channels, stride):
super(MakeLayer4, self).__init__()
self.block_down_sample = block(in_channels, out_channels,
stride=stride, down_sample=True)
self.block1 = block(out_channels, out_channels, stride=1)
self.block2 = block(out_channels, out_channels, stride=1)
self.block3 = block(out_channels, out_channels, stride=1)
def construct(self, x):
x = self.block_down_sample(x)
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
return x
class MakeLayer6(nn.Cell):
"""
make resnet50 6 layers
"""
def __init__(self, block, in_channels, out_channels, stride):
super(MakeLayer6, self).__init__()
self.block_down_sample = block(in_channels, out_channels,
stride=stride, down_sample=True)
self.block1 = block(out_channels, out_channels, stride=1)
self.block2 = block(out_channels, out_channels, stride=1)
self.block3 = block(out_channels, out_channels, stride=1)
self.block4 = block(out_channels, out_channels, stride=1)
self.block5 = block(out_channels, out_channels, stride=1)
def construct(self, x):
x = self.block_down_sample(x)
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.block5(x)
return x
class ResNet50(nn.Cell):
"""
resnet nn.Cell
"""
def __init__(self, block, num_classes=100):
super(ResNet50, self).__init__()
weight_conv = Tensor(np.ones([64, 3, 7, 7]).astype(np.float32) * 0.01)
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, weight_init=weight_conv)
self.bn1 = bn_with_initialize(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)
self.layer1 = MakeLayer3(
block, in_channels=64, out_channels=256, stride=1)
self.layer2 = MakeLayer4(
block, in_channels=256, out_channels=512, stride=2)
self.layer3 = MakeLayer6(
block, in_channels=512, out_channels=1024, stride=2)
self.layer4 = MakeLayer3(
block, in_channels=1024, out_channels=2048, stride=2)
self.avgpool = nn.AvgPool2d(7, 1)
self.flatten = nn.Flatten()
weight_fc = Tensor(np.ones([num_classes, 512 * block.expansion]).astype(np.float32) * 0.01)
bias_fc = Tensor(np.ones([num_classes]).astype(np.float32) * 0.01)
self.fc = nn.Dense(512 * block.expansion, num_classes, weight_init=weight_fc, bias_init=bias_fc)
def construct(self, x):
"""
:param x:
:return:
"""
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = self.flatten(x)
x = self.fc(x)
return x
def resnet50():
return ResNet50(ResidualBlock, 10)
@non_graph_engine
def test_compile():
net = resnet50()
input_data = Tensor(np.ones([1, 3, 224, 224]).astype(np.float32) * 0.01)
output = net(input_data)
print(output.asnumpy())