forked from mindspore-Ecosystem/mindspore
66 lines
2.3 KiB
Python
66 lines
2.3 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
@File : test_sparse_pynative.py
|
|
@Author:
|
|
@Date : 2020-08-04
|
|
@Desc : test mindspore sparse pynative
|
|
"""
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import context, Tensor, RowTensor, SparseTensor
|
|
from mindspore.ops import composite as C
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, enable_sparse=True)
|
|
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
class GradWrap(nn.Cell):
|
|
def __init__(self, network):
|
|
super(GradWrap, self).__init__()
|
|
self.network = network
|
|
def construct(self, *args):
|
|
grad = grad_all(self.network)(*args)
|
|
return grad
|
|
|
|
|
|
def test_row_tensor_attr():
|
|
class RowTensorGetAttr(nn.Cell):
|
|
def __init__(self, dense_shape):
|
|
super(RowTensorGetAttr, self).__init__()
|
|
self.dense_shape = dense_shape
|
|
def construct(self, indices, values):
|
|
x = RowTensor(indices, values, self.dense_shape)
|
|
return x.values, x.indices, x.dense_shape
|
|
indices = Tensor([0])
|
|
values = Tensor([[1, 2]], dtype=ms.float32)
|
|
RowTensorGetAttr((3, 2))(indices, values)
|
|
GradWrap(RowTensorGetAttr((3, 2)))(indices, values)
|
|
|
|
|
|
def test_sparse_tensor_attr():
|
|
class SparseTensorGetAttr(nn.Cell):
|
|
def __init__(self):
|
|
super(SparseTensorGetAttr, self).__init__()
|
|
self.dense_shape = (3, 4)
|
|
def construct(self, indices, values):
|
|
x = SparseTensor(indices, values, self.dense_shape)
|
|
return x.values, x.indices, x.dense_shape
|
|
|
|
indices = Tensor([[0, 1], [1, 2]])
|
|
values = Tensor([1, 2], dtype=ms.float32)
|
|
SparseTensorGetAttr()(indices, values)
|
|
GradWrap(SparseTensorGetAttr())(indices, values)
|