mindspore/tests/ut/python/optimizer/test_python_pass.py

308 lines
11 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore
import mindspore.nn as nn
from mindspore import context
from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P
from mindspore.graph_utils.python_pass import registe_pass, unregiste_pass, set_renorm, gen_new_parameter,\
cancel_new_parameter
from mindspore.common.api import _generate_pip_args
from mindspore._c_expression import generate_key, Executor_
from mindspore.graph_utils.graph_pattern import OneOf, Prim, Call, NoneOf, Any, NewTensor, NewParameter, Imm
context.set_context(mode=context.GRAPH_MODE)
def get_func_graph(obj, *args, phase="validate"):
args_names, args_list = _generate_pip_args(obj, *args)
dic = dict(zip(args_names, args_list))
key = generate_key(phase, dic)
phase_prefix = str(key[1])
if phase == 'export':
phase = phase + '.' + phase_prefix + '.' + str(obj.create_time)
else:
phase = phase_prefix + phase + '.' + str(obj.create_time)
_executor = Executor_.get_instance()
_executor.compile(obj, args_list, phase, False)
return _executor.get_func_graph(phase)
def test_softmax_relu():
"""
Use python pass to transform from Softmax to ReLU.
"""
inputs = Tensor(np.ones([42]), mindspore.float16)
softmax_model = nn.Softmax()
@registe_pass(run_only_once=True)
def softmax_relu_pass():
x = Any()
pattern = Call(P.Softmax(), inputs=[x])
target = Call(P.ReLU(), inputs=[x])
return pattern, target
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
unregiste_pass(softmax_relu_pass)
assert "ReLU" in transformed_repr
assert "Softmax" not in transformed_repr
def test_softmax_relu_sigmoid():
"""
Use python pass to transform from Softmax(x) to ReLU(Sigmoid(x)).
NOTE:
Sigmoid pattern only exists in the target.
"""
inputs = Tensor(np.ones([42]), mindspore.float16)
softmax_model = nn.Softmax()
@registe_pass(run_only_once=True)
def softmax_relu_pass():
x = Any()
softmax_pattern = Prim(P.Softmax())
pattern = Call(softmax_pattern, inputs=[x])
sigmoid_pattern = Prim(P.Sigmoid())
call_sigmoid = Call(sigmoid_pattern, [x])
relu_pattern = Prim(P.ReLU())
target = Call(relu_pattern, inputs=[call_sigmoid])
return pattern, target
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(3)
unregiste_pass(softmax_relu_pass)
assert "ReLU" in transformed_repr
assert "Sigmoid" in transformed_repr
assert "Softmax" not in transformed_repr
def test_isin_pattern_0():
"""
Test IsIn pattern which expresses the IsIn/OneOf semantics.
"""
inputs = Tensor(np.ones([42]), mindspore.float16)
softmax_model = nn.Softmax()
@registe_pass(run_only_once=True)
def softmax_relu_pass():
x = Any()
softmax_pattern = Prim(P.Softmax())
call_softmax = Call(softmax_pattern, inputs=[x])
relu_pattern = Prim(P.ReLU())
call_relu = Call(relu_pattern, inputs=[x])
pattern = OneOf([call_softmax, call_relu])
relu6_pattern = Prim(P.ReLU6())
target = Call(relu6_pattern, inputs=[x])
return pattern, target
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
unregiste_pass(softmax_relu_pass)
assert "ReLU6" in transformed_repr
assert "Softmax" not in transformed_repr
def test_isin_pattern_1():
"""
Test IsIn. IsIn is used as nested inputs for the target in this case.
"""
inputs = Tensor(np.ones([42]), mindspore.float16)
softmax_model = nn.Softmax()
@registe_pass(run_only_once=True)
def softmax_neg_pass():
x = Any()
softmax_pattern = Prim(P.Softmax())
call_softmax = Call(softmax_pattern, inputs=[x])
relu_pattern = Prim(P.ReLU())
call_relu = Call(relu_pattern, inputs=[x])
pattern = OneOf([call_softmax, call_relu])
neg_ops = Prim(P.Neg())
target = Call(neg_ops, inputs=[pattern])
return pattern, target
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(4)
unregiste_pass(softmax_neg_pass)
assert "Neg" in transformed_repr
assert "Softmax" in transformed_repr
def test_isnot_pattern_0():
"""
Test IsNot pattern which expresses the IsNot semantics.
Case: IsNot pass failed to match
"""
set_renorm(False)
class ConvBN(nn.Cell):
def __init__(self):
super(ConvBN, self).__init__()
self.conv = P.Conv2D(32, 3)
self.conv_weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
self.scale = Tensor(np.ones([32]), mindspore.float32)
self.bias = Tensor(np.ones([32]), mindspore.float32)
self.mean = Tensor(np.ones([32]), mindspore.float32)
self.variance = Tensor(np.ones([32]), mindspore.float32)
self.bn = P.BatchNorm()
def construct(self, x):
x = self.conv(x, self.conv_weight)
x = self.bn(x, self.scale, self.bias, self.mean, self.variance)
return x
inputs = Tensor(np.random.normal(0, 1, (10, 32, 32, 32)), mindspore.float32)
conv_bn_model = ConvBN()
@registe_pass(run_only_once=True)
def single_bn_pass():
"""
Sub a BN which does NOT take Conv as inputs to ReLU6.
"""
conv2d_prim = Prim("Conv2D")
conv2d = Call(conv2d_prim)
pattern_0 = NoneOf(conv2d)
pattern = Call(P.BatchNorm(), inputs=[pattern_0])
target = Call(P.ReLU6(), inputs=[pattern_0])
return pattern, target
@registe_pass(run_only_once=True)
def bn_pass():
"""
Sub a BN to Softmax.
"""
pattern = Call(P.BatchNorm())
target = Call(P.Softmax())
return pattern, target
transformed_repr = get_func_graph(conv_bn_model, inputs).get_return().expanded_str(5)
unregiste_pass(single_bn_pass)
unregiste_pass(bn_pass)
assert "ReLU6" not in transformed_repr
assert "Softmax" in transformed_repr
set_renorm(True)
def test_isnot_pattern_1():
"""
Test IsNot pattern which expresses the IsNot semantics.
Case: IsNot pattern matches with the graph
"""
inputs = Tensor(np.ones([42]), mindspore.float16)
softmax_model = nn.Softmax()
@registe_pass(run_only_once=True)
def single_bn_pass():
"""
Sub a BN which does NOT take MatMul as inputs to ReLU6.
"""
matmul = Prim("MatMul")
pattern_0 = NoneOf(matmul)
softmax = P.Softmax()
pattern = Call(softmax, inputs=[pattern_0])
relu6 = P.ReLU6()
target = Call(relu6, inputs=[pattern_0])
return pattern, target
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5)
unregiste_pass(single_bn_pass)
assert "ReLU6" in transformed_repr
assert "Softmax" not in transformed_repr
def test_newtensor_pattern():
"""
Test NewTensor pattern in the target
"""
set_renorm(False)
inputs = Tensor(np.ones([42]), mindspore.float16)
softmax_model = nn.Softmax()
@registe_pass(run_only_once=True)
def softmax_addn_pass():
x = Any()
pattern = Call(P.Softmax(), inputs=[x])
weight_tensor = Tensor(np.zeros([42]), mindspore.float16)
new_weight = NewTensor(weight_tensor)
target = Call(P.AddN(), inputs=[x, new_weight])
return pattern, target
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
unregiste_pass(softmax_addn_pass)
assert "AddN" in transformed_repr
assert "Softmax" not in transformed_repr
set_renorm(True)
def test_newparameter_pattern():
"""
Test NewParameter pattern in the target
"""
inputs = Tensor(np.ones([42]), mindspore.float16)
softmax_model = nn.Softmax()
@registe_pass(run_only_once=True)
def softmax_addn_pass():
x = Any()
pattern = Call(P.Softmax(), inputs=[x])
default_tensor0 = Tensor(np.ones((4, 4)), mindspore.float32)
default_tensor1 = Tensor(np.ones((4, 4)), mindspore.float32)
new_para_0 = NewParameter("Merlin", default_tensor0)
new_para_1 = NewParameter("Arthur", default_tensor1)
target_0 = Call(P.MatMul(), inputs=[new_para_0, new_para_1])
target = Call("make_tuple", inputs=[target_0])
return pattern, target
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5)
unregiste_pass(softmax_addn_pass)
assert "MatMul" in transformed_repr
assert "make_tuple" in transformed_repr
assert "Softmax" not in transformed_repr
def test_imm_target():
"""
Test NewParameter pattern in the target
"""
inputs = Tensor(np.ones([42]), mindspore.float16)
softmax_model = nn.Softmax()
@registe_pass(run_only_once=True)
def softmax_pass():
x = Any()
pattern = Call(P.Softmax(), inputs=[x])
imm = Imm(0)
target_0 = Call("make_tuple", inputs=[pattern])
target = Call("tuple_getitem", inputs=[target_0, imm])
return pattern, target
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5)
unregiste_pass(softmax_pass)
assert "make_tuple" in transformed_repr
assert "tuple_getitem" in transformed_repr
assert "Softmax" in transformed_repr
def test_gen_new_parameter():
"""
Test gen_new_parameter
"""
inputs = Tensor(np.ones([42]), mindspore.float16)
softmax_model = nn.Softmax()
default_tensor = Tensor(np.ones((4, 4)), mindspore.float32)
new_para = NewParameter("Merlin", default_tensor)
gen_new_parameter(new_para)
@registe_pass(run_only_once=True)
def softmax_make_tuple_pass():
x = Any()
softmax = P.Softmax()
pattern = Call(softmax, inputs=[x])
target = Call("make_tuple", inputs=[pattern, new_para])
return pattern, target
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5)
assert "Merlin" in transformed_repr
unregiste_pass(softmax_make_tuple_pass)
cancel_new_parameter(new_para)
transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5)
assert "Merlin" not in transformed_repr