mindspore/tests/ut/python/metrics/test_topk.py

103 lines
3.2 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test topk"""
import math
import numpy as np
import pytest
from mindspore import Tensor
from mindspore.nn.metrics import TopKCategoricalAccuracy, Top1CategoricalAccuracy, Top5CategoricalAccuracy
def test_type_topk():
with pytest.raises(TypeError):
TopKCategoricalAccuracy(2.1)
def test_value_topk():
with pytest.raises(ValueError):
TopKCategoricalAccuracy(-1)
def test_input_topk():
x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2],
[0.3, 0.1, 0.5, 0.1, 0.],
[0.9, 0.6, 0.2, 0.01, 0.3]]))
topk = TopKCategoricalAccuracy(3)
topk.clear()
with pytest.raises(ValueError):
topk.update(x)
def test_topk():
"""test_topk"""
x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2],
[0.1, 0.35, 0.5, 0.2, 0.],
[0.9, 0.6, 0.2, 0.01, 0.3]]))
y = Tensor(np.array([2, 0, 1]))
y2 = Tensor(np.array([[0, 0, 1, 0, 0],
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0]]))
topk = TopKCategoricalAccuracy(3)
topk.clear()
topk.update(x, y)
result = topk.eval()
result2 = topk(x, y2)
assert math.isclose(result, 2 / 3)
assert math.isclose(result2, 2 / 3)
def test_zero_topk():
topk = TopKCategoricalAccuracy(3)
topk.clear()
with pytest.raises(RuntimeError):
topk.eval()
def test_top1():
"""test_top1"""
x = Tensor(np.array([[0.2, 0.5, 0.2, 0.1, 0.],
[0.1, 0.35, 0.25, 0.2, 0.1],
[0.9, 0.1, 0, 0., 0]]))
y = Tensor(np.array([2, 0, 0]))
y2 = Tensor(np.array([[0, 0, 1, 0, 0],
[1, 0, 0, 0, 0],
[1, 0, 0, 0, 0]]))
topk = Top1CategoricalAccuracy()
topk.clear()
topk.update(x, y)
result = topk.eval()
result2 = topk(x, y2)
assert math.isclose(result, 1 / 3)
assert math.isclose(result2, 1 / 3)
def test_top5():
"""test_top5"""
x = Tensor(np.array([[0.15, 0.4, 0.1, 0.05, 0., 0.2, 0.1],
[0.1, 0.35, 0.25, 0.2, 0.1, 0., 0.],
[0., 0.5, 0.2, 0.1, 0.1, 0.1, 0.]]))
y = Tensor(np.array([2, 0, 0]))
y2 = Tensor(np.array([[0, 0, 1, 0, 0],
[1, 0, 0, 0, 0],
[1, 0, 0, 0, 0]]))
topk = Top5CategoricalAccuracy()
topk.clear()
topk.update(x, y)
result = topk.eval()
result2 = topk(x, y2)
assert math.isclose(result, 2 / 3)
assert math.isclose(result2, 2 / 3)