mindspore/tests/perf_test/bert/test_bert_train.py

233 lines
9.0 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Bert test."""
# pylint: disable=missing-docstring, arguments-differ, W0612
import os
import mindspore.common.dtype as mstype
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.nn.optim import AdamWeightDecay
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from mindspore.nn import learning_rate_schedule as lr_schedules
from model_zoo.official.nlp.bert.src import BertConfig, BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell
from ...dataset_mock import MindData
from ...ops_common import nn, np, batch_tuple_tensor, build_construct_graph
_current_dir = os.path.dirname(os.path.realpath(__file__)) + "/../python/test_data"
context.set_context(mode=context.GRAPH_MODE)
def get_dataset(batch_size=1):
dataset_types = (np.int32, np.int32, np.int32, np.int32, np.int32, np.int32, np.int32)
dataset_shapes = ((batch_size, 128), (batch_size, 128), (batch_size, 128), (batch_size, 1), \
(batch_size, 20), (batch_size, 20), (batch_size, 20))
dataset = MindData(size=2, batch_size=batch_size,
np_types=dataset_types,
output_shapes=dataset_shapes,
input_indexs=(0, 1))
return dataset
def load_test_data(batch_size=1):
dataset = get_dataset(batch_size)
ret = dataset.next()
ret = batch_tuple_tensor(ret, batch_size)
return ret
def get_config(version='base', batch_size=1):
"""
get_config definition
"""
if version == 'base':
return BertConfig(
batch_size=batch_size,
seq_length=128,
vocab_size=21128,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=True,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float32)
if version == 'large':
return BertConfig(
batch_size=batch_size,
seq_length=128,
vocab_size=21128,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=True,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float32)
return BertConfig(batch_size=batch_size)
class BertLearningRate(lr_schedules.LearningRateSchedule):
def __init__(self, decay_steps, warmup_steps=100, learning_rate=0.1, end_learning_rate=0.0001, power=1.0):
super(BertLearningRate, self).__init__()
self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps)
self.decay_lr = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
self.greater = P.Greater()
self.one = Tensor(np.array([1.0]).astype(np.float32))
self.cast = P.Cast()
def construct(self, global_step):
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
warmup_lr = self.warmup_lr(global_step)
decay_lr = self.decay_lr(global_step)
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
return lr
def test_bert_train():
"""
the main function
"""
class ModelBert(nn.Cell):
"""
ModelBert definition
"""
def __init__(self, network, optimizer=None):
super(ModelBert, self).__init__()
self.optimizer = optimizer
self.train_network = BertTrainOneStepCell(network, self.optimizer)
self.train_network.set_train()
def construct(self, arg0, arg1, arg2, arg3, arg4, arg5, arg6):
return self.train_network(arg0, arg1, arg2, arg3, arg4, arg5, arg6)
version = os.getenv('VERSION', 'large')
batch_size = int(os.getenv('BATCH_SIZE', '1'))
inputs = load_test_data(batch_size)
config = get_config(version=version, batch_size=batch_size)
netwithloss = BertNetworkWithLoss(config, True)
lr = BertLearningRate(10)
optimizer = AdamWeightDecay(netwithloss.trainable_params(), lr)
net = ModelBert(netwithloss, optimizer=optimizer)
net.set_train()
build_construct_graph(net, *inputs, execute=False)
def test_bert_withlossscale_train():
class ModelBert(nn.Cell):
def __init__(self, network, optimizer=None):
super(ModelBert, self).__init__()
self.optimizer = optimizer
self.train_network = BertTrainOneStepWithLossScaleCell(network, self.optimizer)
self.train_network.set_train()
def construct(self, arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7):
return self.train_network(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7)
version = os.getenv('VERSION', 'base')
batch_size = int(os.getenv('BATCH_SIZE', '1'))
scaling_sens = Tensor(np.ones([1]).astype(np.float32))
inputs = load_test_data(batch_size) + (scaling_sens,)
config = get_config(version=version, batch_size=batch_size)
netwithloss = BertNetworkWithLoss(config, True)
lr = BertLearningRate(10)
optimizer = AdamWeightDecay(netwithloss.trainable_params(), lr)
net = ModelBert(netwithloss, optimizer=optimizer)
net.set_train()
build_construct_graph(net, *inputs, execute=True)
def bert_withlossscale_manager_train():
class ModelBert(nn.Cell):
def __init__(self, network, optimizer=None):
super(ModelBert, self).__init__()
self.optimizer = optimizer
manager = DynamicLossScaleManager()
update_cell = LossScaleUpdateCell(manager)
self.train_network = BertTrainOneStepWithLossScaleCell(network, self.optimizer,
scale_update_cell=update_cell)
self.train_network.set_train()
def construct(self, arg0, arg1, arg2, arg3, arg4, arg5, arg6):
return self.train_network(arg0, arg1, arg2, arg3, arg4, arg5, arg6)
version = os.getenv('VERSION', 'base')
batch_size = int(os.getenv('BATCH_SIZE', '1'))
inputs = load_test_data(batch_size)
config = get_config(version=version, batch_size=batch_size)
netwithloss = BertNetworkWithLoss(config, True)
lr = BertLearningRate(10)
optimizer = AdamWeightDecay(netwithloss.trainable_params(), lr)
net = ModelBert(netwithloss, optimizer=optimizer)
net.set_train()
build_construct_graph(net, *inputs, execute=True)
def bert_withlossscale_manager_train_feed():
class ModelBert(nn.Cell):
def __init__(self, network, optimizer=None):
super(ModelBert, self).__init__()
self.optimizer = optimizer
manager = DynamicLossScaleManager()
update_cell = LossScaleUpdateCell(manager)
self.train_network = BertTrainOneStepWithLossScaleCell(network, self.optimizer,
scale_update_cell=update_cell)
self.train_network.set_train()
def construct(self, arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7):
return self.train_network(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7)
version = os.getenv('VERSION', 'base')
batch_size = int(os.getenv('BATCH_SIZE', '1'))
scaling_sens = Tensor(np.ones([1]).astype(np.float32))
inputs = load_test_data(batch_size) + (scaling_sens,)
config = get_config(version=version, batch_size=batch_size)
netwithloss = BertNetworkWithLoss(config, True)
lr = BertLearningRate(10)
optimizer = AdamWeightDecay(netwithloss.trainable_params(), lr)
net = ModelBert(netwithloss, optimizer=optimizer)
net.set_train()
build_construct_graph(net, *inputs, execute=True)