forked from mindspore-Ecosystem/mindspore
197 lines
7.2 KiB
C++
197 lines
7.2 KiB
C++
/**
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "core/serving_tensor.h"
|
|
#include <vector>
|
|
#include <unordered_map>
|
|
#include <string>
|
|
#include <algorithm>
|
|
#include "include/infer_log.h"
|
|
|
|
using std::string;
|
|
using std::unordered_map;
|
|
using std::vector;
|
|
|
|
namespace mindspore {
|
|
namespace serving {
|
|
|
|
using inference::DataType;
|
|
using inference::InferTensorBase;
|
|
|
|
const size_t kMaxShapeElementCount = INT32_MAX;
|
|
const size_t kMaxDataBufferSize = UINT32_MAX;
|
|
|
|
ServingTensor::ServingTensor(ms_serving::Tensor &other) : tensor_(other) {}
|
|
|
|
ServingTensor::~ServingTensor() {}
|
|
|
|
DataType ServingTensor::data_type() const {
|
|
const std::unordered_map<ms_serving::DataType, inference::DataType> type2id_map{
|
|
{ms_serving::MS_UNKNOWN, inference::kMSI_Unknown}, {ms_serving::MS_BOOL, inference::kMSI_Bool},
|
|
{ms_serving::MS_INT8, inference::kMSI_Int8}, {ms_serving::MS_UINT8, inference::kMSI_Uint8},
|
|
{ms_serving::MS_INT16, inference::kMSI_Int16}, {ms_serving::MS_UINT16, inference::kMSI_Uint16},
|
|
{ms_serving::MS_INT32, inference::kMSI_Int32}, {ms_serving::MS_UINT32, inference::kMSI_Uint32},
|
|
{ms_serving::MS_INT64, inference::kMSI_Int64}, {ms_serving::MS_UINT64, inference::kMSI_Uint64},
|
|
{ms_serving::MS_FLOAT16, inference::kMSI_Float16}, {ms_serving::MS_FLOAT32, inference::kMSI_Float32},
|
|
{ms_serving::MS_FLOAT64, inference::kMSI_Float64},
|
|
};
|
|
auto it = type2id_map.find(tensor_.tensor_type());
|
|
if (it == type2id_map.end()) {
|
|
MSI_LOG_WARNING << "failed to get data type, undefined data type " << tensor_.tensor_type();
|
|
return inference::kMSI_Unknown;
|
|
} else {
|
|
return it->second;
|
|
}
|
|
}
|
|
|
|
void ServingTensor::set_data_type(DataType data_type) {
|
|
const std::unordered_map<inference::DataType, ms_serving::DataType> id2type_map{
|
|
{inference::kMSI_Unknown, ms_serving::MS_UNKNOWN}, {inference::kMSI_Bool, ms_serving::MS_BOOL},
|
|
{inference::kMSI_Float64, ms_serving::MS_FLOAT64}, {inference::kMSI_Int8, ms_serving::MS_INT8},
|
|
{inference::kMSI_Uint8, ms_serving::MS_UINT8}, {inference::kMSI_Int16, ms_serving::MS_INT16},
|
|
{inference::kMSI_Uint16, ms_serving::MS_UINT16}, {inference::kMSI_Int32, ms_serving::MS_INT32},
|
|
{inference::kMSI_Uint32, ms_serving::MS_UINT32}, {inference::kMSI_Int64, ms_serving::MS_INT64},
|
|
{inference::kMSI_Uint64, ms_serving::MS_UINT64}, {inference::kMSI_Float16, ms_serving::MS_FLOAT16},
|
|
{inference::kMSI_Float32, ms_serving::MS_FLOAT32},
|
|
};
|
|
auto it = id2type_map.find(data_type);
|
|
if (it == id2type_map.end()) {
|
|
MSI_LOG_WARNING << "failed to set data type, undefined data type " << data_type;
|
|
tensor_.set_tensor_type(ms_serving::MS_UNKNOWN);
|
|
} else {
|
|
tensor_.set_tensor_type(it->second);
|
|
}
|
|
}
|
|
|
|
std::vector<int64_t> ServingTensor::shape() const {
|
|
std::vector<int64_t> result;
|
|
auto dims = tensor_.tensor_shape().dims();
|
|
std::transform(dims.begin(), dims.end(), std::back_inserter(result), [](const int64_t dim) { return dim; });
|
|
return result;
|
|
}
|
|
|
|
void ServingTensor::set_shape(const std::vector<int64_t> &shape) {
|
|
auto tensor_shape = tensor_.mutable_tensor_shape();
|
|
tensor_shape->Clear();
|
|
size_t element_count = 1;
|
|
for (auto dim : shape) {
|
|
if (dim <= 0 || element_count > kMaxShapeElementCount / dim) {
|
|
MSI_LOG_ERROR << "failed to set shape, invalid dim num " << dim;
|
|
tensor_shape->Clear();
|
|
return;
|
|
}
|
|
element_count *= dim;
|
|
tensor_shape->add_dims(dim);
|
|
}
|
|
}
|
|
|
|
bool ServingTensor::resize_data(size_t data_len) {
|
|
string *buffer = tensor_.mutable_data();
|
|
if (buffer == nullptr) {
|
|
MSI_LOG_ERROR << "invalid buffer data";
|
|
return false;
|
|
}
|
|
buffer->resize(data_len);
|
|
return true;
|
|
}
|
|
|
|
size_t ServingTensor::data_size() const { return tensor_.data().size(); }
|
|
|
|
void *ServingTensor::mutable_data() { return const_cast<char *>(tensor_.mutable_data()->data()); }
|
|
|
|
const void *ServingTensor::data() const { return tensor_.data().data(); }
|
|
|
|
ServingRequest::ServingRequest(const ms_serving::PredictRequest &request) : request_(request) {
|
|
auto &data = request_.data();
|
|
std::transform(data.begin(), data.end(), std::back_inserter(cache_),
|
|
[](const ms_serving::Tensor &item) { return ServingTensor(const_cast<ms_serving::Tensor &>(item)); });
|
|
}
|
|
|
|
size_t ServingRequest::size() const { return cache_.size(); }
|
|
|
|
const InferTensorBase *ServingRequest::operator[](size_t index) const {
|
|
if (index >= cache_.size()) {
|
|
MSI_LOG_ERROR << "visit invalid index " << index << " total size " << cache_.size();
|
|
return nullptr;
|
|
}
|
|
return &(cache_[index]);
|
|
}
|
|
|
|
ServingImages::ServingImages(const ms_serving::Images &images) : images_(images) {}
|
|
|
|
size_t ServingImages::batch_size() const { return images_.images_size(); }
|
|
|
|
bool ServingImages::get(size_t index, const void *&pic_buffer, uint32_t &pic_size) const {
|
|
if (index >= static_cast<size_t>(images_.images_size())) {
|
|
MSI_LOG_ERROR << "visit invalid index " << index << " total size " << images_.images_size();
|
|
return false;
|
|
}
|
|
pic_buffer = images_.images(index).data();
|
|
pic_size = images_.images(index).size();
|
|
return true;
|
|
}
|
|
|
|
size_t ServingImages::input_index() const { return static_cast<size_t>(images_.input_index()); }
|
|
|
|
size_t ServingReply::size() const { return cache_.size(); }
|
|
|
|
InferTensorBase *ServingReply::operator[](size_t index) {
|
|
if (index >= cache_.size()) {
|
|
MSI_LOG_ERROR << "visit invalid index " << index << " total size " << cache_.size();
|
|
return nullptr;
|
|
}
|
|
return &(cache_[index]);
|
|
}
|
|
|
|
const InferTensorBase *ServingReply::operator[](size_t index) const {
|
|
if (index >= cache_.size()) {
|
|
MSI_LOG_ERROR << "visit invalid index " << index << " total size " << cache_.size();
|
|
return nullptr;
|
|
}
|
|
return &(cache_[index]);
|
|
}
|
|
|
|
InferTensorBase *ServingReply::add() {
|
|
auto new_item = reply_.add_result();
|
|
if (new_item == nullptr) {
|
|
MSI_LOG_ERROR << "add new item failed, current total size " << cache_.size();
|
|
return nullptr;
|
|
}
|
|
cache_.push_back(ServingTensor(*new_item));
|
|
return &(cache_.back());
|
|
}
|
|
|
|
void ServingReply::clear() { reply_.mutable_result()->Clear(); }
|
|
|
|
ServingImagesRequest::ServingImagesRequest(const ms_serving::PredictRequest &request) : request_(request) {
|
|
auto &images_inputs = request_.images();
|
|
std::transform(images_inputs.begin(), images_inputs.end(), std::back_inserter(cache_),
|
|
[](const ms_serving::Images &item) { return ServingImages(const_cast<ms_serving::Images &>(item)); });
|
|
}
|
|
|
|
size_t ServingImagesRequest::size() const { return cache_.size(); }
|
|
|
|
const inference::InferImagesBase *ServingImagesRequest::operator[](size_t index) const {
|
|
if (index >= cache_.size()) {
|
|
MSI_LOG_ERROR << "visit invalid index " << index << " total size " << cache_.size();
|
|
return nullptr;
|
|
}
|
|
return &(cache_[index]);
|
|
}
|
|
|
|
} // namespace serving
|
|
} // namespace mindspore
|