mindspore/tests/st/dump/test_data_dump.py

240 lines
9.2 KiB
Python

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import sys
import tempfile
import time
import shutil
import glob
from importlib import import_module
from pathlib import Path
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.nn import Cell
from mindspore.nn import Dense
from mindspore.nn import SoftmaxCrossEntropyWithLogits
from mindspore.nn import Momentum
from mindspore.nn import TrainOneStepCell
from mindspore.nn import WithLossCell
from dump_test_utils import generate_dump_json
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.add = P.Add()
def construct(self, x_, y_):
return self.add(x_, y_)
x = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
y = np.array([[7, 8, 9], [10, 11, 12]]).astype(np.float32)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_async_dump():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
pwd = os.getcwd()
with tempfile.TemporaryDirectory(dir=pwd) as tmp_dir:
dump_path = os.path.join(tmp_dir, 'async_dump')
dump_config_path = os.path.join(tmp_dir, 'async_dump.json')
generate_dump_json(dump_path, dump_config_path, 'test_async_dump')
os.environ['MINDSPORE_DUMP_CONFIG'] = dump_config_path
dump_file_path = os.path.join(dump_path, 'rank_0', 'Net', '0', '0')
if os.path.isdir(dump_path):
shutil.rmtree(dump_path)
add = Net()
add(Tensor(x), Tensor(y))
time.sleep(5)
assert len(os.listdir(dump_file_path)) == 1
def run_e2e_dump():
if sys.platform != 'linux':
return
pwd = os.getcwd()
with tempfile.TemporaryDirectory(dir=pwd) as tmp_dir:
dump_path = os.path.join(tmp_dir, 'e2e_dump')
dump_config_path = os.path.join(tmp_dir, 'e2e_dump.json')
generate_dump_json(dump_path, dump_config_path, 'test_e2e_dump')
os.environ['MINDSPORE_DUMP_CONFIG'] = dump_config_path
dump_file_path = os.path.join(dump_path, 'rank_0', 'Net', '0', '0')
if os.path.isdir(dump_path):
shutil.rmtree(dump_path)
add = Net()
add(Tensor(x), Tensor(y))
if context.get_context("device_target") == "Ascend":
assert len(os.listdir(dump_file_path)) == 5
output_name = "Add.Add-op*.0.0.*.output.0.DefaultFormat.npy"
elif context.get_context("device_target") == "CPU":
assert len(os.listdir(dump_file_path)) == 5
output_name = "Add.Add-op*.0.0.*.output.0.DefaultFormat.npy"
else:
assert len(os.listdir(dump_file_path)) == 3
output_name = "Add.Add-op*.0.0.*.output.0.DefaultFormat.npy"
output_path = glob.glob(os.path.join(dump_file_path, output_name))[0]
real_path = os.path.realpath(output_path)
output = np.load(real_path)
expect = np.array([[8, 10, 12], [14, 16, 18]], np.float32)
assert output.dtype == expect.dtype
assert np.array_equal(output, expect)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_e2e_dump():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
run_e2e_dump()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_e2e_dump_with_hccl_env():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
os.environ["RANK_TABLE_FILE"] = "invalid_file.json"
os.environ["RANK_ID"] = "4"
run_e2e_dump()
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cpu_e2e_dump():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
run_e2e_dump()
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_cpu_e2e_dump_with_hccl_set():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
os.environ["RANK_TABLE_FILE"] = "invalid_file.json"
os.environ["RANK_ID"] = "4"
run_e2e_dump()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gpu_e2e_dump():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
run_e2e_dump()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gpu_e2e_dump_with_hccl_set():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
os.environ["RANK_TABLE_FILE"] = "invalid_file.json"
os.environ["RANK_ID"] = "4"
run_e2e_dump()
class ReluReduceMeanDenseRelu(Cell):
def __init__(self, kernel, bias, in_channel, num_class):
super().__init__()
self.relu = P.ReLU()
self.mean = P.ReduceMean(keep_dims=False)
self.dense = Dense(in_channel, num_class, kernel, bias)
def construct(self, x_):
x_ = self.relu(x_)
x_ = self.mean(x_, (2, 3))
x_ = self.dense(x_)
x_ = self.relu(x_)
return x_
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_async_dump_net_multi_layer_mode1():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
pwd = os.getcwd()
with tempfile.TemporaryDirectory(dir=pwd) as tmp_dir:
dump_path = os.path.join(tmp_dir, 'async_dump_net_multi_layer_mode1')
json_file_path = os.path.join(tmp_dir, "test_async_dump_net_multi_layer_mode1.json")
generate_dump_json(dump_path, json_file_path, 'test_async_dump_net_multi_layer_mode1')
os.environ['MINDSPORE_DUMP_CONFIG'] = json_file_path
weight = Tensor(np.ones((1000, 2048)).astype(np.float32))
bias = Tensor(np.ones((1000,)).astype(np.float32))
net = ReluReduceMeanDenseRelu(weight, bias, 2048, 1000)
criterion = SoftmaxCrossEntropyWithLogits(sparse=False)
optimizer = Momentum(learning_rate=0.1, momentum=0.1,
params=filter(lambda x: x.requires_grad, net.get_parameters()))
net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer)
train_network.set_train()
inputs = Tensor(np.random.randn(32, 2048, 7, 7).astype(np.float32))
label = Tensor(np.zeros(shape=(32, 1000)).astype(np.float32))
net_dict = train_network(inputs, label)
dump_file_path = os.path.join(dump_path, 'rank_0', 'test', '0', '0')
dump_file_name = list(Path(dump_file_path).rglob("*SoftmaxCrossEntropyWithLogits*"))[0]
dump_file_full_path = os.path.join(dump_file_path, dump_file_name)
npy_path = os.path.join(dump_path, "npy_files")
if os.path.exists(npy_path):
shutil.rmtree(npy_path)
os.mkdir(npy_path)
tool_path_search_list = list(Path('/usr/local/Ascend').rglob('msaccucmp.py*'))
if tool_path_search_list:
converter = import_module("mindspore.offline_debug.convert_async")
converter.AsyncDumpConverter([dump_file_full_path], npy_path).convert_files()
npy_result_file = list(Path(npy_path).rglob("*output.0.*.npy"))[0]
dump_result = np.load(os.path.join(npy_path, npy_result_file))
for index, value in enumerate(net_dict):
assert value.asnumpy() == dump_result[index]
else:
print('Failed to find hisi convert tools: msaccucmp.py or msaccucmp.pyc.')
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_dump_with_diagnostic_path():
"""
Test e2e dump when path is not set (set to empty) in dump json file and MS_DIAGNOSTIC_DATA_PATH is set.
Data is expected to be dumped into MS_DIAGNOSTIC_DATA_PATH/debug_dump.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
pwd = os.getcwd()
with tempfile.TemporaryDirectory(dir=pwd) as tmp_dir:
dump_config_path = os.path.join(tmp_dir, 'e2e_dump.json')
generate_dump_json('', dump_config_path, 'test_e2e_dump')
os.environ['MINDSPORE_DUMP_CONFIG'] = dump_config_path
diagnose_path = os.path.join(tmp_dir, 'e2e_dump')
os.environ['MS_DIAGNOSTIC_DATA_PATH'] = diagnose_path
dump_file_path = os.path.join(diagnose_path, 'debug_dump', 'rank_0', 'Net', '0', '0')
if os.path.isdir(diagnose_path):
shutil.rmtree(diagnose_path)
add = Net()
add(Tensor(x), Tensor(y))
assert len(os.listdir(dump_file_path)) == 5