mindspore/tests/st/ops/gpu/test_scatter_update_op.py

360 lines
16 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
# all cases tested against dchip
class TestScatterUpdateNet(nn.Cell):
def __init__(self, inputx, indices, updates):
super(TestScatterUpdateNet, self).__init__()
self.scatter_update = P.ScatterUpdate()
self.inputx = Parameter(inputx, name="inputx")
self.indices = Parameter(indices, name="indices")
self.updates = Parameter(updates, name="updates")
def construct(self):
out = self.scatter_update(self.inputx, self.indices, self.updates)
return out
def scatter_update_net(inputx, indices, updates):
net = TestScatterUpdateNet(inputx, indices, updates)
return net()
class TestScatterUpdateDynamicNet(nn.Cell):
def __init__(self, inputx, indices, updates):
super(TestScatterUpdateDynamicNet, self).__init__()
self.scatter_update = P.ScatterUpdate()
self.test_dynamic = inner.GpuConvertToDynamicShape()
self.inputx = Parameter(inputx, name="inputx")
self.indices = Parameter(indices, name="indices")
self.updates = Parameter(updates, name="updates")
def construct(self):
indices = self.test_dynamic(self.indices)
updates = self.test_dynamic(self.updates)
out = self.scatter_update(self.inputx, indices, updates)
return out
def scatter_update_d_net(inputx, indices, updates):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = TestScatterUpdateDynamicNet(inputx, indices, updates)
return net()
class TestScatterUpdateDynamicNet2(nn.Cell):
def __init__(self, inputx):
super(TestScatterUpdateDynamicNet2, self).__init__()
self.scatter_update = P.ScatterUpdate()
self.test_dynamic = inner.GpuConvertToDynamicShape()
self.inputx = Parameter(inputx, name="inputx")
def construct(self, indices, updates):
indices = self.test_dynamic(indices)
updates = self.test_dynamic(updates)
out = self.scatter_update(self.inputx, indices, updates)
return out
def scatter_update_d2_net(inputx, indices_1, updates_1,
indices_2, updates_2):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = TestScatterUpdateDynamicNet2(inputx)
out1 = net(indices_1, updates_1)
out2 = net(indices_2, updates_2)
return (out1, out2)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_small_float32():
inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
indices = Tensor(np.array([0, 1]).astype(np.int32))
updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float32))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[0., 1., 2.],
[3., 4., 5.]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_input_updated():
inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
indices = Tensor(np.array([0, 1]).astype(np.int32))
updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float32))
net = TestScatterUpdateNet(inputx, indices, updates)
net()
expected = np.array([[0., 1., 2.],
[3., 4., 5.]])
np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_input_less_than_1_float32():
inputx = Tensor(np.array([[0.214141, 0.415151, 0.51516],
[0.876542, 0.451611, 0.55112],
[0.111244, 0.633333, 0.34444]]).astype(np.float32))
indices = Tensor(np.array([1, 0, 2]).astype(np.int32))
updates = Tensor(np.arange(34, 43).reshape((3, 3)).astype(np.float32))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[37., 38., 39.],
[34., 35., 36.],
[40., 41., 42.]], dtype=np.float32)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_float16():
inputx = Tensor(np.zeros((2, 3)).astype(np.float16))
indices = Tensor(np.array([0, 1]).astype(np.int32))
updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float16))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[0., 1., 2.],
[3., 4., 5.]]).astype(np.float16)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_int32():
inputx = Tensor(np.zeros((2, 3)).astype(np.int32))
indices = Tensor(np.array([0, 1]).astype(np.int32))
updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.int32))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[0., 1., 2.],
[3., 4., 5.]]).astype(np.int32)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_large_float16():
inputx = Tensor(np.zeros((4, 3)).astype(np.float16))
indices = Tensor(np.array([[2, 1], [0, 3]]).astype(np.int32))
updates = Tensor(np.arange(63, 75).reshape((2, 2, 3)).astype(np.float16))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[69., 70., 71.],
[66., 67., 68.],
[63., 64., 65.],
[72., 73., 74.]]).astype(np.float16)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_disordered_float16():
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.float16)))
indices = Tensor(np.array([1, 2]).astype(np.int32))
updates = Tensor(np.arange(63, 71).reshape((2, 4)).astype(np.float16))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[45., 44., 43., 42.],
[63., 64., 65., 66.],
[67., 68., 69., 70.]]).astype(np.float16)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_disordered_int32():
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.int32)))
indices = Tensor(np.array([1, 2]).astype(np.int32))
updates = Tensor(np.arange(63, 71).reshape((2, 4)).astype(np.int32))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[45., 44., 43., 42.],
[63., 64., 65., 66.],
[67., 68., 69., 70.]]).astype(np.int32)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_large_shape_float16():
inputx = Tensor(np.arange(96).reshape((4, 2, 3, 4)).astype(np.float16))
indices = Tensor(np.array([1, 0]).astype(np.int32))
updates = Tensor(np.flip(np.arange(48).reshape((2, 2, 3, 4)).astype(np.float16)))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[[[23., 22., 21., 20.],
[19., 18., 17., 16.],
[15., 14., 13., 12.]],
[[11., 10., 9., 8.],
[7., 6., 5., 4.],
[3., 2., 1., 0.]]],
[[[47., 46., 45., 44.],
[43., 42., 41., 40.],
[39., 38., 37., 36.]],
[[35., 34., 33., 32.],
[31., 30., 29., 28.],
[27., 26., 25., 24.]]],
[[[48., 49., 50., 51.],
[52., 53., 54., 55.],
[56., 57., 58., 59.]],
[[60., 61., 62., 63.],
[64., 65., 66., 67.],
[68., 69., 70., 71.]]],
[[[72., 73., 74., 75.],
[76., 77., 78., 79.],
[80., 81., 82., 83.]],
[[84., 85., 86., 87.],
[88., 89., 90., 91.],
[92., 93., 94., 95.]]]]).astype(np.float16)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_disordered_int8():
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.int8)))
indices = Tensor(np.array([1, 2]).astype(np.int32))
updates = Tensor(np.arange(63, 71).reshape((2, 4)).astype(np.int8))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[45., 44., 43., 42.],
[63., 64., 65., 66.],
[67., 68., 69., 70.]]).astype(np.int8)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_large_shape_int8():
inputx = Tensor(np.arange(96).reshape((4, 2, 3, 4)).astype(np.int8))
indices = Tensor(np.array([1, 0]).astype(np.int32))
updates = Tensor(np.flip(np.arange(48).reshape((2, 2, 3, 4)).astype(np.int8)))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[[[23., 22., 21., 20.],
[19., 18., 17., 16.],
[15., 14., 13., 12.]],
[[11., 10., 9., 8.],
[7., 6., 5., 4.],
[3., 2., 1., 0.]]],
[[[47., 46., 45., 44.],
[43., 42., 41., 40.],
[39., 38., 37., 36.]],
[[35., 34., 33., 32.],
[31., 30., 29., 28.],
[27., 26., 25., 24.]]],
[[[48., 49., 50., 51.],
[52., 53., 54., 55.],
[56., 57., 58., 59.]],
[[60., 61., 62., 63.],
[64., 65., 66., 67.],
[68., 69., 70., 71.]]],
[[[72., 73., 74., 75.],
[76., 77., 78., 79.],
[80., 81., 82., 83.]],
[[84., 85., 86., 87.],
[88., 89., 90., 91.],
[92., 93., 94., 95.]]]]).astype(np.int8)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_large_uint8():
inputx = Tensor(np.zeros((4, 3)).astype(np.uint8))
indices = Tensor(np.array([[2, 1], [0, 3]]).astype(np.int32))
updates = Tensor(np.arange(63, 75).reshape((2, 2, 3)).astype(np.uint8))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[69., 70., 71.],
[66., 67., 68.],
[63., 64., 65.],
[72., 73., 74.]]).astype(np.uint8)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_disordered_uint8():
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.uint8)))
indices = Tensor(np.array([1, 2]).astype(np.int32))
updates = Tensor(np.arange(63, 71).reshape((2, 4)).astype(np.uint8))
output = scatter_update_net(inputx, indices, updates)
expected = np.array([[45., 44., 43., 42.],
[63., 64., 65., 66.],
[67., 68., 69., 70.]]).astype(np.uint8)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_large_shape_dynamic_int8():
inputx = Tensor(np.arange(96).reshape((4, 2, 3, 4)).astype(np.int8))
indices = Tensor(np.array([1, 0]).astype(np.int32))
updates = Tensor(np.flip(np.arange(48).reshape((2, 2, 3, 4)).astype(np.int8)))
output = scatter_update_d_net(inputx, indices, updates)
expected = np.array([[[[23., 22., 21., 20.],
[19., 18., 17., 16.],
[15., 14., 13., 12.]],
[[11., 10., 9., 8.],
[7., 6., 5., 4.],
[3., 2., 1., 0.]]],
[[[47., 46., 45., 44.],
[43., 42., 41., 40.],
[39., 38., 37., 36.]],
[[35., 34., 33., 32.],
[31., 30., 29., 28.],
[27., 26., 25., 24.]]],
[[[48., 49., 50., 51.],
[52., 53., 54., 55.],
[56., 57., 58., 59.]],
[[60., 61., 62., 63.],
[64., 65., 66., 67.],
[68., 69., 70., 71.]]],
[[[72., 73., 74., 75.],
[76., 77., 78., 79.],
[80., 81., 82., 83.]],
[[84., 85., 86., 87.],
[88., 89., 90., 91.],
[92., 93., 94., 95.]]]]).astype(np.int8)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_disordered_dynamic_int32():
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.int32)))
indices = Tensor(np.array([1, 2]).astype(np.int32))
updates = Tensor(np.arange(63, 71).reshape((2, 4)).astype(np.int32))
output = scatter_update_d_net(inputx, indices, updates)
expected = np.array([[45., 44., 43., 42.],
[63., 64., 65., 66.],
[67., 68., 69., 70.]]).astype(np.int32)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_update_two_inputs():
inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
indices_1 = Tensor(np.array([0, 1]).astype(np.int32))
updates_1 = Tensor(np.arange(6).reshape((2, 3)).astype(np.float32))
indices_2 = Tensor(np.array([1]).astype(np.int32))
updates_2 = Tensor(np.arange(34, 37).reshape((1, 3)).astype(np.float32))
output_1, output_2 = scatter_update_d2_net(inputx, indices_1, updates_1,
indices_2, updates_2)
expected_1 = np.array([[0., 1., 2.],
[3., 4., 5.]], dtype=np.float32)
expected_2 = np.array([[0., 1., 2.],
[34., 35., 36.]], dtype=np.float32)
np.testing.assert_array_almost_equal(output_1.asnumpy(), expected_1)
np.testing.assert_array_almost_equal(output_2.asnumpy(), expected_2)