forked from mindspore-Ecosystem/mindspore
241 lines
7.5 KiB
Python
241 lines
7.5 KiB
Python
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
import mindspore.nn as nn
|
|
import mindspore.context as context
|
|
|
|
class GatherNdNet(nn.Cell):
|
|
def __init__(self):
|
|
super(GatherNdNet, self).__init__()
|
|
self.gathernd = P.GatherNd()
|
|
|
|
def construct(self, x, indices):
|
|
return self.gathernd(x, indices)
|
|
|
|
|
|
def gathernd0(nptype):
|
|
x = Tensor(np.arange(3 * 2, dtype=nptype).reshape(3, 2))
|
|
indices = Tensor(np.array([[1, 1], [0, 1]]).astype(np.int32))
|
|
expect = np.array([3, 1]).astype(nptype)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
gathernd = GatherNdNet()
|
|
output = gathernd(x, indices)
|
|
|
|
assert np.array_equal(output.asnumpy(), expect)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd0_float64():
|
|
gathernd0(np.float64)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd0_float32():
|
|
gathernd0(np.float32)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd0_float16():
|
|
gathernd0(np.float16)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd0_int32():
|
|
gathernd0(np.int32)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd0_int16():
|
|
gathernd0(np.int16)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd0_uint8():
|
|
gathernd0(np.uint8)
|
|
|
|
def gathernd1(nptype):
|
|
x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=nptype).reshape(2, 3, 4, 5))
|
|
indices = Tensor(np.array([[[[[l, k, j, i] for i in [1, 3, 4]] for j in range(4)]
|
|
for k in range(3)] for l in range(2)], dtype='i4'))
|
|
expect = np.array([[[[1., 3., 4.],
|
|
[6., 8., 9.],
|
|
[11., 13., 14.],
|
|
[16., 18., 19.]],
|
|
|
|
[[21., 23., 24.],
|
|
[26., 28., 29.],
|
|
[31., 33., 34.],
|
|
[36., 38., 39.]],
|
|
|
|
[[41., 43., 44.],
|
|
[46., 48., 49.],
|
|
[51., 53., 54.],
|
|
[56., 58., 59.]]],
|
|
|
|
[[[61., 63., 64.],
|
|
[66., 68., 69.],
|
|
[71., 73., 74.],
|
|
[76., 78., 79.]],
|
|
|
|
[[81., 83., 84.],
|
|
[86., 88., 89.],
|
|
[91., 93., 94.],
|
|
[96., 98., 99.]],
|
|
|
|
[[101., 103., 104.],
|
|
[106., 108., 109.],
|
|
[111., 113., 114.],
|
|
[116., 118., 119.]]]]).astype(nptype)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
gather = GatherNdNet()
|
|
output = gather(x, indices)
|
|
|
|
assert np.array_equal(output.asnumpy(), expect)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd1_float64():
|
|
gathernd1(np.float64)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd1_float32():
|
|
gathernd1(np.float32)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd1_float16():
|
|
gathernd1(np.float16)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd1_int32():
|
|
gathernd1(np.int32)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd1_int16():
|
|
gathernd1(np.int16)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd1_uint8():
|
|
gathernd1(np.uint8)
|
|
|
|
def gathernd2(nptype):
|
|
x = Tensor(np.array([[4., 5., 4., 1., 5.],
|
|
[4., 9., 5., 6., 4.],
|
|
[9., 8., 4., 3., 6.],
|
|
[0., 4., 2., 2., 8.],
|
|
[1., 8., 6., 2., 8.],
|
|
[8., 1., 9., 7., 3.],
|
|
[7., 9., 2., 5., 7.],
|
|
[9., 8., 6., 8., 5.],
|
|
[3., 7., 2., 7., 4.],
|
|
[4., 2., 8., 2., 9.]]).astype(np.float16))
|
|
|
|
indices = Tensor(np.array([[4000], [1], [300000]]).astype(np.int32))
|
|
expect = np.array([[0., 0., 0., 0., 0.],
|
|
[4., 9., 5., 6., 4.],
|
|
[0., 0., 0., 0., 0.]])
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
gathernd = GatherNdNet()
|
|
output = gathernd(x, indices)
|
|
|
|
assert np.array_equal(output.asnumpy(), expect)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd2_float64():
|
|
gathernd2(np.float64)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd2_float32():
|
|
gathernd2(np.float32)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd2_float16():
|
|
gathernd2(np.float16)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd2_int32():
|
|
gathernd2(np.int32)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd2_int16():
|
|
gathernd2(np.int16)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd2_uint8():
|
|
gathernd2(np.uint8)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd_bool():
|
|
x = Tensor(np.array([[True, False], [False, False]]).astype(np.bool))
|
|
indices = Tensor(np.array([[0, 0], [0, 1], [1, 0], [1, 1]]).astype(np.int32))
|
|
expect = np.array([True, False, False, False]).astype(np.bool)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
gathernd = GatherNdNet()
|
|
output = gathernd(x, indices)
|
|
|
|
assert np.array_equal(output.asnumpy(), expect)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_gathernd_indices_int64():
|
|
x = Tensor(np.array([[True, False], [False, False]]).astype(np.bool))
|
|
indices = Tensor(np.array([[0, 0], [0, 1], [1, 0], [1, 1]]).astype(np.int64))
|
|
expect = np.array([True, False, False, False]).astype(np.bool)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
gathernd = GatherNdNet()
|
|
output = gathernd(x, indices)
|
|
|
|
assert np.array_equal(output.asnumpy(), expect)
|