forked from mindspore-Ecosystem/mindspore
267 lines
9.4 KiB
Python
267 lines
9.4 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
from mindspore.common.tensor import Tensor
|
|
from mindspore.nn import Cell
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops.operations import _inner_ops as inner
|
|
|
|
|
|
class NetEqual(Cell):
|
|
def __init__(self):
|
|
super(NetEqual, self).__init__()
|
|
self.Equal = P.Equal()
|
|
|
|
def construct(self, x, y):
|
|
return self.Equal(x, y)
|
|
|
|
class NetEqualDynamic(Cell):
|
|
def __init__(self):
|
|
super(NetEqualDynamic, self).__init__()
|
|
self.conv = inner.GpuConvertToDynamicShape()
|
|
self.Equal = P.Equal()
|
|
|
|
def construct(self, x, y):
|
|
x_conv = self.conv(x)
|
|
y_conv = self.conv(y)
|
|
return self.Equal(x_conv, y_conv)
|
|
|
|
class NetNotEqual(Cell):
|
|
def __init__(self):
|
|
super(NetNotEqual, self).__init__()
|
|
self.NotEqual = P.NotEqual()
|
|
|
|
def construct(self, x, y):
|
|
return self.NotEqual(x, y)
|
|
|
|
class NetGreaterEqual(Cell):
|
|
def __init__(self):
|
|
super(NetGreaterEqual, self).__init__()
|
|
self.GreaterEqual = P.GreaterEqual()
|
|
|
|
def construct(self, x, y):
|
|
return self.GreaterEqual(x, y)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_equal():
|
|
x0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
|
|
x0 = Tensor(x0_np)
|
|
y0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
|
|
y0 = Tensor(y0_np)
|
|
expect0 = np.equal(x0_np, y0_np)
|
|
x1_np = np.array([0, 1, 3]).astype(np.float32)
|
|
x1 = Tensor(x1_np)
|
|
y1_np = np.array([0, 1, -3]).astype(np.float32)
|
|
y1 = Tensor(y1_np)
|
|
expect1 = np.equal(x1_np, y1_np)
|
|
x2_np = np.array([0, 1, 3]).astype(np.int32)
|
|
x2 = Tensor(x2_np)
|
|
y2_np = np.array([0, 1, -3]).astype(np.int32)
|
|
y2 = Tensor(y2_np)
|
|
expect2 = np.equal(x2_np, y2_np)
|
|
x3_np = np.array([0, 1, 3]).astype(np.int16)
|
|
x3 = Tensor(x3_np)
|
|
y3_np = np.array([0, 1, -3]).astype(np.int16)
|
|
y3 = Tensor(y3_np)
|
|
expect3 = np.equal(x3_np, y3_np)
|
|
x4_np = np.array([0, 1, 4]).astype(np.uint8)
|
|
x4 = Tensor(x4_np)
|
|
y4_np = np.array([0, 1, 3]).astype(np.uint8)
|
|
y4 = Tensor(y4_np)
|
|
expect4 = np.equal(x4_np, y4_np)
|
|
x5_np = np.array([True, False, True]).astype(bool)
|
|
x5 = Tensor(x5_np)
|
|
y5_np = np.array([True, False, False]).astype(bool)
|
|
y5 = Tensor(y5_np)
|
|
expect5 = np.equal(x5_np, y5_np)
|
|
x6_np = np.array([0, 1, 4]).astype(np.int8)
|
|
x6 = Tensor(x4_np)
|
|
y6_np = np.array([0, 1, 3]).astype(np.int8)
|
|
y6 = Tensor(y4_np)
|
|
expect6 = np.equal(x6_np, y6_np)
|
|
x7_np = np.array([0, 1, 4]).astype(np.int64)
|
|
x7 = Tensor(x4_np)
|
|
y7_np = np.array([0, 1, 3]).astype(np.int64)
|
|
y7 = Tensor(y4_np)
|
|
expect7 = np.equal(x7_np, y7_np)
|
|
x8_np = np.array([0, 1, 4]).astype(np.float16)
|
|
x8 = Tensor(x4_np)
|
|
y8_np = np.array([0, 1, 3]).astype(np.float16)
|
|
y8 = Tensor(y4_np)
|
|
expect8 = np.equal(x8_np, y8_np)
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
equal = NetEqual()
|
|
output0 = equal(x0, y0)
|
|
assert np.all(output0.asnumpy() == expect0)
|
|
assert output0.shape == expect0.shape
|
|
output1 = equal(x1, y1)
|
|
assert np.all(output1.asnumpy() == expect1)
|
|
assert output1.shape == expect1.shape
|
|
output2 = equal(x2, y2)
|
|
assert np.all(output2.asnumpy() == expect2)
|
|
assert output2.shape == expect2.shape
|
|
output3 = equal(x3, y3)
|
|
assert np.all(output3.asnumpy() == expect3)
|
|
assert output3.shape == expect3.shape
|
|
output4 = equal(x4, y4)
|
|
assert np.all(output4.asnumpy() == expect4)
|
|
assert output4.shape == expect4.shape
|
|
output5 = equal(x5, y5)
|
|
assert np.all(output5.asnumpy() == expect5)
|
|
assert output5.shape == expect5.shape
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
equal = NetEqual()
|
|
output0 = equal(x0, y0)
|
|
assert np.all(output0.asnumpy() == expect0)
|
|
assert output0.shape == expect0.shape
|
|
output1 = equal(x1, y1)
|
|
assert np.all(output1.asnumpy() == expect1)
|
|
assert output1.shape == expect1.shape
|
|
output2 = equal(x2, y2)
|
|
assert np.all(output2.asnumpy() == expect2)
|
|
assert output2.shape == expect2.shape
|
|
output3 = equal(x3, y3)
|
|
assert np.all(output3.asnumpy() == expect3)
|
|
assert output3.shape == expect3.shape
|
|
output4 = equal(x4, y4)
|
|
assert np.all(output4.asnumpy() == expect4)
|
|
assert output4.shape == expect4.shape
|
|
output5 = equal(x5, y5)
|
|
assert np.all(output5.asnumpy() == expect5)
|
|
assert output5.shape == expect5.shape
|
|
output6 = equal(x6, y6)
|
|
assert np.all(output6.asnumpy() == expect6)
|
|
assert output6.shape == expect6.shape
|
|
output7 = equal(x7, y7)
|
|
assert np.all(output7.asnumpy() == expect7)
|
|
assert output7.shape == expect7.shape
|
|
output8 = equal(x8, y8)
|
|
assert np.all(output8.asnumpy() == expect8)
|
|
assert output8.shape == expect8.shape
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_notequal():
|
|
x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32))
|
|
y0 = Tensor(np.array([[1, 2]]).astype(np.float32))
|
|
expect0 = np.array([[True, True], [False, True]])
|
|
x1 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int16))
|
|
y1 = Tensor(np.array([[1, 2]]).astype(np.int16))
|
|
expect1 = np.array([[True, True], [False, True]])
|
|
x2 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.uint8))
|
|
y2 = Tensor(np.array([[1, 2]]).astype(np.uint8))
|
|
expect2 = np.array([[True, True], [False, False]])
|
|
x3 = Tensor(np.array([[False, True], [True, False]]).astype(bool))
|
|
y3 = Tensor(np.array([[True, False]]).astype(bool))
|
|
expect3 = np.array([[True, True], [False, False]])
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
notequal = NetNotEqual()
|
|
output0 = notequal(x0, y0)
|
|
assert np.all(output0.asnumpy() == expect0)
|
|
assert output0.shape == expect0.shape
|
|
output1 = notequal(x1, y1)
|
|
assert np.all(output1.asnumpy() == expect1)
|
|
assert output1.shape == expect1.shape
|
|
output2 = notequal(x2, y2)
|
|
assert np.all(output2.asnumpy() == expect2)
|
|
assert output2.shape == expect2.shape
|
|
output3 = notequal(x3, y3)
|
|
assert np.all(output3.asnumpy() == expect3)
|
|
assert output3.shape == expect3.shape
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
notequal = NetNotEqual()
|
|
output0 = notequal(x0, y0)
|
|
assert np.all(output0.asnumpy() == expect0)
|
|
assert output0.shape == expect0.shape
|
|
output1 = notequal(x1, y1)
|
|
assert np.all(output1.asnumpy() == expect1)
|
|
assert output1.shape == expect1.shape
|
|
output2 = notequal(x2, y2)
|
|
assert np.all(output2.asnumpy() == expect2)
|
|
assert output2.shape == expect2.shape
|
|
output3 = notequal(x3, y3)
|
|
assert np.all(output3.asnumpy() == expect3)
|
|
assert output3.shape == expect3.shape
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_greaterqual():
|
|
x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32))
|
|
y0 = Tensor(np.array([[1, 2]]).astype(np.float32))
|
|
expect0 = np.array([[True, False], [True, False]])
|
|
x1 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int16))
|
|
y1 = Tensor(np.array([[1, 2]]).astype(np.int16))
|
|
expect1 = np.array([[True, False], [True, False]])
|
|
x2 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.uint8))
|
|
y2 = Tensor(np.array([[1, 2]]).astype(np.uint8))
|
|
expect2 = np.array([[True, False], [True, True]])
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
gequal = NetGreaterEqual()
|
|
output0 = gequal(x0, y0)
|
|
assert np.all(output0.asnumpy() == expect0)
|
|
assert output0.shape == expect0.shape
|
|
output1 = gequal(x1, y1)
|
|
assert np.all(output1.asnumpy() == expect1)
|
|
assert output1.shape == expect1.shape
|
|
output2 = gequal(x2, y2)
|
|
assert np.all(output2.asnumpy() == expect2)
|
|
assert output2.shape == expect2.shape
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
gequal = NetGreaterEqual()
|
|
output0 = gequal(x0, y0)
|
|
assert np.all(output0.asnumpy() == expect0)
|
|
assert output0.shape == expect0.shape
|
|
output1 = gequal(x1, y1)
|
|
assert np.all(output1.asnumpy() == expect1)
|
|
assert output1.shape == expect1.shape
|
|
output2 = gequal(x2, y2)
|
|
assert np.all(output2.asnumpy() == expect2)
|
|
assert output2.shape == expect2.shape
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_equal_dynamic_shape():
|
|
x0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
|
|
x0 = Tensor(x0_np)
|
|
y0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32)
|
|
y0 = Tensor(y0_np)
|
|
expect0 = np.equal(x0_np, y0_np)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
equal = NetEqualDynamic()
|
|
output0 = equal(x0, y0)
|
|
assert np.all(output0.asnumpy() == expect0)
|
|
assert output0.shape == expect0.shape
|