mindspore/tests/st/ops/gpu/test_batch_matmul.py

200 lines
7.1 KiB
Python

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
class BatchMatMulNet(nn.Cell):
def __init__(self, transpose_a=False, transpose_b=False):
super(BatchMatMulNet, self).__init__()
self.batch_matmul = P.BatchMatMul(transpose_a, transpose_b)
def construct(self, x, y):
return self.batch_matmul(x, y)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_4d():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = BatchMatMulNet()
output = net(input_x, input_y)
expect = [[[[20, 23, 26, 29]],
[[200, 212, 224, 236]],
[[596, 617, 638, 659]],
[[1208, 1238, 1268, 1298]]],
[[[2036, 2075, 2114, 2153]],
[[3080, 3128, 3176, 3224]],
[[4340, 4397, 4454, 4511]],
[[5816, 5882, 5948, 6014]]]]
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_4d_float64():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float64)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float64)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = BatchMatMulNet()
output = net(input_x, input_y)
expect = [[[[20, 23, 26, 29]],
[[200, 212, 224, 236]],
[[596, 617, 638, 659]],
[[1208, 1238, 1268, 1298]]],
[[[2036, 2075, 2114, 2153]],
[[3080, 3128, 3176, 3224]],
[[4340, 4397, 4454, 4511]],
[[5816, 5882, 5948, 6014]]]]
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_4d_transpose_a():
input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = BatchMatMulNet(transpose_a=True)
output = net(input_x, input_y)
expect = [[[[20, 23, 26, 29]],
[[200, 212, 224, 236]],
[[596, 617, 638, 659]],
[[1208, 1238, 1268, 1298]]],
[[[2036, 2075, 2114, 2153]],
[[3080, 3128, 3176, 3224]],
[[4340, 4397, 4454, 4511]],
[[5816, 5882, 5948, 6014]]]]
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_4d_transpose_b():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = BatchMatMulNet(transpose_b=True)
output = net(input_x, input_y)
expect = [[[[5, 14, 23, 32]],
[[158, 194, 230, 266]],
[[527, 590, 653, 716]],
[[1112, 1202, 1292, 1382]]],
[[[1913, 2030, 2147, 2264]],
[[2930, 3074, 3218, 3362]],
[[4163, 4334, 4505, 4676]],
[[5612, 5810, 6008, 6206]]]]
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_4d_transpose_ab():
input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = BatchMatMulNet(transpose_a=True, transpose_b=True)
output = net(input_x, input_y)
expect = [[[[5, 14, 23, 32]],
[[158, 194, 230, 266]],
[[527, 590, 653, 716]],
[[1112, 1202, 1292, 1382]]],
[[[1913, 2030, 2147, 2264]],
[[2930, 3074, 3218, 3362]],
[[4163, 4334, 4505, 4676]],
[[5612, 5810, 6008, 6206]]]]
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_4D_fp16():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float16)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float16)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = BatchMatMulNet()
output = net(input_x, input_y)
expect = np.array([[[[20, 23, 26, 29]],
[[200, 212, 224, 236]],
[[596, 617, 638, 659]],
[[1208, 1238, 1268, 1298]]],
[[[2036, 2076, 2114, 2152]],
[[3080, 3128, 3176, 3224]],
[[4340, 4396, 4456, 4510]],
[[5816, 5880, 5948, 6016]]]]).astype(np.float16)
assert (output.asnumpy() == expect).all()
class BatchMatMul_d(nn.Cell):
def __init__(self, transpose_a=False, transpose_b=False):
super(BatchMatMul_d, self).__init__()
self.batch_matmul = P.BatchMatMul(transpose_a, transpose_b)
self.test_dynamic = inner.GpuConvertToDynamicShape()
def construct(self, x, y):
x = self.test_dynamic(x)
y = self.test_dynamic(y)
return self.batch_matmul(x, y)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_batchmatmul_dynamic():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = BatchMatMul_d()
x1 = np.arange(8).reshape(2, 2, 2).astype(np.float32)
y1 = np.arange(28).reshape(2, 2, 7).astype(np.float32)
output1 = net(Tensor(x1), Tensor(y1))
expect1 = np.matmul(x1, y1)
assert (output1.asnumpy() == expect1).all()
x2 = np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3).astype(np.float32)
y2 = np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4).astype(np.float32)
output2 = net(Tensor(x2), Tensor(y2))
expect2 = np.matmul(x2, y2)
assert (output2.asnumpy() == expect2).all()