forked from mindspore-Ecosystem/mindspore
216 lines
6.5 KiB
Python
216 lines
6.5 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
import mindspore.ops.operations.array_ops as P
|
|
from mindspore import Tensor
|
|
from mindspore.common.api import ms_function
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore.common.parameter import Parameter
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, nptype):
|
|
super(Net, self).__init__()
|
|
|
|
self.unstack = P.Unstack(axis=3)
|
|
self.data_np = np.array([[[[[0, 0],
|
|
[-2, -1]],
|
|
[[0, 0],
|
|
[0, 1]]],
|
|
[[[0, 0],
|
|
[2, 3]],
|
|
[[0, 0],
|
|
[4, 5]]],
|
|
[[[0, 0],
|
|
[6, 7]],
|
|
[[0, 0],
|
|
[8, 9]]]],
|
|
[[[[0, 0],
|
|
[10, 11]],
|
|
[[0, 0],
|
|
[12, 13]]],
|
|
[[[0, 0],
|
|
[14, 15]],
|
|
[[0, 0],
|
|
[16, 17]]],
|
|
[[[0, 0],
|
|
[18, 19]],
|
|
[[0, 0],
|
|
[20, 21]]]],
|
|
[[[[0, 0],
|
|
[22, 23]],
|
|
[[0, 0],
|
|
[24, 25]]],
|
|
[[[0, 0],
|
|
[26, 27]],
|
|
[[0, 0],
|
|
[28, 29]]],
|
|
[[[0, 0],
|
|
[30, 31]],
|
|
[[0, 0],
|
|
[32, 33]]]]]).astype(nptype)
|
|
self.x1 = Parameter(initializer(Tensor(self.data_np), [3, 3, 2, 2, 2]), name='x1')
|
|
|
|
@ms_function
|
|
def construct(self):
|
|
return self.unstack(self.x1)
|
|
|
|
|
|
def unpack(nptype):
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
|
unpack_ = Net(nptype)
|
|
output = unpack_()
|
|
expect = (np.reshape(np.array([0] * 36).astype(nptype), (3, 3, 2, 2)),
|
|
np.arange(-2, 34, 1).reshape(3, 3, 2, 2).astype(nptype))
|
|
|
|
for i, exp in enumerate(expect):
|
|
assert (output[i].asnumpy() == exp).all()
|
|
|
|
|
|
def unpack_pynative(nptype):
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target='CPU')
|
|
x1 = np.array([[[[[0, 0],
|
|
[-2, -1]],
|
|
[[0, 0],
|
|
[0, 1]]],
|
|
[[[0, 0],
|
|
[2, 3]],
|
|
[[0, 0],
|
|
[4, 5]]],
|
|
[[[0, 0],
|
|
[6, 7]],
|
|
[[0, 0],
|
|
[8, 9]]]],
|
|
[[[[0, 0],
|
|
[10, 11]],
|
|
[[0, 0],
|
|
[12, 13]]],
|
|
[[[0, 0],
|
|
[14, 15]],
|
|
[[0, 0],
|
|
[16, 17]]],
|
|
[[[0, 0],
|
|
[18, 19]],
|
|
[[0, 0],
|
|
[20, 21]]]],
|
|
[[[[0, 0],
|
|
[22, 23]],
|
|
[[0, 0],
|
|
[24, 25]]],
|
|
[[[0, 0],
|
|
[26, 27]],
|
|
[[0, 0],
|
|
[28, 29]]],
|
|
[[[0, 0],
|
|
[30, 31]],
|
|
[[0, 0],
|
|
[32, 33]]]]]).astype(nptype)
|
|
x1 = Tensor(x1)
|
|
expect = (np.reshape(np.array([0] * 36).astype(nptype), (3, 3, 2, 2)),
|
|
np.arange(-2, 34, 1).reshape(3, 3, 2, 2).astype(nptype))
|
|
output = P.Unstack(axis=3)(x1)
|
|
|
|
for i, exp in enumerate(expect):
|
|
assert (output[i].asnumpy() == exp).all()
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_graph_float32():
|
|
unpack(np.float32)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_graph_float16():
|
|
unpack(np.float16)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_graph_int32():
|
|
unpack(np.int32)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_graph_int16():
|
|
unpack(np.int16)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_graph_uint8():
|
|
unpack(np.uint8)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_graph_bool():
|
|
unpack(np.bool)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_pynative_float32():
|
|
unpack_pynative(np.float32)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_pynative_float16():
|
|
unpack_pynative(np.float16)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_pynative_int32():
|
|
unpack_pynative(np.int32)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_pynative_int16():
|
|
unpack_pynative(np.int16)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_pynative_uint8():
|
|
unpack_pynative(np.uint8)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_unpack_pynative_bool():
|
|
unpack_pynative(np.bool)
|