mindspore/tests/st/ops/cpu/test_unpack_op.py

216 lines
6.5 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
import mindspore.ops.operations.array_ops as P
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
class Net(nn.Cell):
def __init__(self, nptype):
super(Net, self).__init__()
self.unstack = P.Unstack(axis=3)
self.data_np = np.array([[[[[0, 0],
[-2, -1]],
[[0, 0],
[0, 1]]],
[[[0, 0],
[2, 3]],
[[0, 0],
[4, 5]]],
[[[0, 0],
[6, 7]],
[[0, 0],
[8, 9]]]],
[[[[0, 0],
[10, 11]],
[[0, 0],
[12, 13]]],
[[[0, 0],
[14, 15]],
[[0, 0],
[16, 17]]],
[[[0, 0],
[18, 19]],
[[0, 0],
[20, 21]]]],
[[[[0, 0],
[22, 23]],
[[0, 0],
[24, 25]]],
[[[0, 0],
[26, 27]],
[[0, 0],
[28, 29]]],
[[[0, 0],
[30, 31]],
[[0, 0],
[32, 33]]]]]).astype(nptype)
self.x1 = Parameter(initializer(Tensor(self.data_np), [3, 3, 2, 2, 2]), name='x1')
@ms_function
def construct(self):
return self.unstack(self.x1)
def unpack(nptype):
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
unpack_ = Net(nptype)
output = unpack_()
expect = (np.reshape(np.array([0] * 36).astype(nptype), (3, 3, 2, 2)),
np.arange(-2, 34, 1).reshape(3, 3, 2, 2).astype(nptype))
for i, exp in enumerate(expect):
assert (output[i].asnumpy() == exp).all()
def unpack_pynative(nptype):
context.set_context(mode=context.PYNATIVE_MODE, device_target='CPU')
x1 = np.array([[[[[0, 0],
[-2, -1]],
[[0, 0],
[0, 1]]],
[[[0, 0],
[2, 3]],
[[0, 0],
[4, 5]]],
[[[0, 0],
[6, 7]],
[[0, 0],
[8, 9]]]],
[[[[0, 0],
[10, 11]],
[[0, 0],
[12, 13]]],
[[[0, 0],
[14, 15]],
[[0, 0],
[16, 17]]],
[[[0, 0],
[18, 19]],
[[0, 0],
[20, 21]]]],
[[[[0, 0],
[22, 23]],
[[0, 0],
[24, 25]]],
[[[0, 0],
[26, 27]],
[[0, 0],
[28, 29]]],
[[[0, 0],
[30, 31]],
[[0, 0],
[32, 33]]]]]).astype(nptype)
x1 = Tensor(x1)
expect = (np.reshape(np.array([0] * 36).astype(nptype), (3, 3, 2, 2)),
np.arange(-2, 34, 1).reshape(3, 3, 2, 2).astype(nptype))
output = P.Unstack(axis=3)(x1)
for i, exp in enumerate(expect):
assert (output[i].asnumpy() == exp).all()
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_graph_float32():
unpack(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_graph_float16():
unpack(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_graph_int32():
unpack(np.int32)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_graph_int16():
unpack(np.int16)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_graph_uint8():
unpack(np.uint8)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_graph_bool():
unpack(np.bool)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_pynative_float32():
unpack_pynative(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_pynative_float16():
unpack_pynative(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_pynative_int32():
unpack_pynative(np.int32)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_pynative_int16():
unpack_pynative(np.int16)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_pynative_uint8():
unpack_pynative(np.uint8)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_unpack_pynative_bool():
unpack_pynative(np.bool)