forked from mindspore-Ecosystem/mindspore
88 lines
2.6 KiB
Python
88 lines
2.6 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.uniq = P.Unique()
|
|
|
|
def construct(self, x):
|
|
return self.uniq(x)
|
|
|
|
|
|
def test_net_fp32():
|
|
x = Tensor(np.array([1, 2, 5, 2]), mstype.float32)
|
|
uniq = Net()
|
|
output = uniq(x)
|
|
print("x:\n", x)
|
|
print("y:\n", output[0])
|
|
print("idx:\n", output[1])
|
|
expect_y_result = [1., 2., 5.]
|
|
expect_idx_result = [0, 1, 2, 1]
|
|
|
|
assert (output[0].asnumpy() == expect_y_result).all()
|
|
assert (output[1].asnumpy() == expect_idx_result).all()
|
|
|
|
def test_net_fp16():
|
|
x = Tensor(np.array([1, 5, 2, 2]), mstype.float16)
|
|
uniq = Net()
|
|
output = uniq(x)
|
|
print("x:\n", x)
|
|
print("y:\n", output[0])
|
|
print("idx:\n", output[1])
|
|
expect_y_result = [1., 5., 2.]
|
|
expect_idx_result = [0, 1, 2, 2]
|
|
|
|
assert (output[0].asnumpy() == expect_y_result).all()
|
|
assert (output[1].asnumpy() == expect_idx_result).all()
|
|
|
|
def test_net_int32():
|
|
x = Tensor(np.array([1, 2, 5, 2]), mstype.int32)
|
|
uniq = Net()
|
|
output = uniq(x)
|
|
print("x:\n", x)
|
|
print("y:\n", output[0])
|
|
print("idx:\n", output[1])
|
|
expect_y_result = [1, 2, 5]
|
|
expect_idx_result = [0, 1, 2, 1]
|
|
|
|
assert (output[0].asnumpy() == expect_y_result).all()
|
|
assert (output[1].asnumpy() == expect_idx_result).all()
|
|
|
|
|
|
def test_net_int64():
|
|
x = Tensor(np.array([1, 2, 5, 2]), mstype.int64)
|
|
uniq = Net()
|
|
output = uniq(x)
|
|
print("x:\n", x)
|
|
print("y:\n", output[0])
|
|
print("idx:\n", output[1])
|
|
expect_y_result = [1, 2, 5]
|
|
expect_idx_result = [0, 1, 2, 1]
|
|
|
|
assert (output[0].asnumpy() == expect_y_result).all()
|
|
assert (output[1].asnumpy() == expect_idx_result).all()
|