forked from mindspore-Ecosystem/mindspore
83 lines
2.6 KiB
Python
83 lines
2.6 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
|
|
|
|
|
class NetSoftmax(nn.Cell):
|
|
def __init__(self):
|
|
super(NetSoftmax, self).__init__()
|
|
self.softmax = P.Softmax(axis=-1)
|
|
x = Tensor(np.array([[0.1, 0.3, 0.6],
|
|
[0.2, -0.6, 0.8],
|
|
[0.6, 1, 0.4]]).astype(np.float32))
|
|
self.x = Parameter(initializer(x, x.shape), name='x')
|
|
|
|
def construct(self):
|
|
return self.softmax(self.x)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_softmax():
|
|
Softmax = NetSoftmax()
|
|
output = Softmax()
|
|
output = output.asnumpy()
|
|
outputSum = output.sum(axis=1)
|
|
expect = np.ones(3)
|
|
error = expect * 1.0e-6
|
|
diff = np.abs(outputSum - expect)
|
|
print(diff)
|
|
assert np.all(diff < error)
|
|
|
|
|
|
class NetSoftmax1(nn.Cell):
|
|
def __init__(self):
|
|
super(NetSoftmax1, self).__init__()
|
|
self.softmax = P.Softmax(axis=-2)
|
|
x = Tensor(np.array([[0.1, 0.3, 0.6],
|
|
[0.2, -0.6, 0.8],
|
|
[0.6, 1, 0.4]]).astype(np.float32))
|
|
self.x = Parameter(initializer(x, x.shape), name='x')
|
|
|
|
def construct(self):
|
|
return self.softmax(self.x)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_softmax1():
|
|
Softmax = NetSoftmax1()
|
|
output = Softmax()
|
|
output = output.asnumpy()
|
|
outputSum = output.sum(axis=0)
|
|
expect = np.ones(3)
|
|
error = expect * 1.0e-6
|
|
diff = np.abs(outputSum - expect)
|
|
print(diff)
|
|
assert np.all(diff < error)
|