forked from mindspore-Ecosystem/mindspore
54 lines
2.0 KiB
Python
54 lines
2.0 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore.ops.operations import _grad_ops as G
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
|
|
|
|
|
class NetReluGrad(nn.Cell):
|
|
def __init__(self):
|
|
super(NetReluGrad, self).__init__()
|
|
self.relu_grad = G.ReluGrad()
|
|
self.x = Parameter(initializer(Tensor(np.array([[[[-1, 1, 1],
|
|
[1, -1, 1],
|
|
[1, 1, -1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='x')
|
|
self.dy = Parameter(initializer(Tensor(np.array([[[[1, 0, 1],
|
|
[0, 1, 0],
|
|
[1, 1, 1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='dy')
|
|
|
|
def construct(self):
|
|
return self.relu_grad(self.dy, self.x)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_relu_grad():
|
|
relu_grad = NetReluGrad()
|
|
output = relu_grad()
|
|
expect = np.array([[[[0, 0, 1], [0, 0, 0], [1, 1, 0]]]]).astype(np.float32)
|
|
error = np.ones(shape=[3, 3]) * 1.0e-6
|
|
diff = np.abs(output.asnumpy() - expect)
|
|
assert np.all(diff < error)
|