mindspore/tests/st/ops/gpu/test_equalcount_op.py

48 lines
1.7 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import mindspore.context as context
class NetEqualCount(nn.Cell):
def __init__(self):
super(NetEqualCount, self).__init__()
self.equalcount = P.EqualCount()
def construct(self, x, y):
return self.equalcount(x, y)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_equalcount():
x = Tensor(np.array([1, 20, 5]).astype(np.int32))
y = Tensor(np.array([2, 20, 5]).astype(np.int32))
expect = np.array([2]).astype(np.int32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
equal_count = NetEqualCount()
output = equal_count(x, y)
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
equal_count = NetEqualCount()
output = equal_count(x, y)
assert (output.asnumpy() == expect).all()