mindspore/model_zoo/official/cv/yolov3_darknet53/src/darknet.py

212 lines
7.0 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""DarkNet model."""
import mindspore.nn as nn
from mindspore.ops import operations as P
def conv_block(in_channels,
out_channels,
kernel_size,
stride,
dilation=1):
"""Get a conv2d batchnorm and relu layer"""
pad_mode = 'same'
padding = 0
return nn.SequentialCell(
[nn.Conv2d(in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
pad_mode=pad_mode),
nn.BatchNorm2d(out_channels, momentum=0.1),
nn.ReLU()]
)
class ResidualBlock(nn.Cell):
"""
DarkNet V1 residual block definition.
Args:
in_channels: Integer. Input channel.
out_channels: Integer. Output channel.
Returns:
Tensor, output tensor.
Examples:
ResidualBlock(3, 208)
"""
expansion = 4
def __init__(self,
in_channels,
out_channels):
super(ResidualBlock, self).__init__()
out_chls = out_channels//2
self.conv1 = conv_block(in_channels, out_chls, kernel_size=1, stride=1)
self.conv2 = conv_block(out_chls, out_channels, kernel_size=3, stride=1)
self.add = P.TensorAdd()
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.conv2(out)
out = self.add(out, identity)
return out
class DarkNet(nn.Cell):
"""
DarkNet V1 network.
Args:
block: Cell. Block for network.
layer_nums: List. Numbers of different layers.
in_channels: Integer. Input channel.
out_channels: Integer. Output channel.
detect: Bool. Whether detect or not. Default:False.
Returns:
Tuple, tuple of output tensor,(f1,f2,f3,f4,f5).
Examples:
DarkNet(ResidualBlock,
[1, 2, 8, 8, 4],
[32, 64, 128, 256, 512],
[64, 128, 256, 512, 1024],
100)
"""
def __init__(self,
block,
layer_nums,
in_channels,
out_channels,
detect=False):
super(DarkNet, self).__init__()
self.outchannel = out_channels[-1]
self.detect = detect
if not len(layer_nums) == len(in_channels) == len(out_channels) == 5:
raise ValueError("the length of layer_num, inchannel, outchannel list must be 5!")
self.conv0 = conv_block(3,
in_channels[0],
kernel_size=3,
stride=1)
self.conv1 = conv_block(in_channels[0],
out_channels[0],
kernel_size=3,
stride=2)
self.conv2 = conv_block(in_channels[1],
out_channels[1],
kernel_size=3,
stride=2)
self.conv3 = conv_block(in_channels[2],
out_channels[2],
kernel_size=3,
stride=2)
self.conv4 = conv_block(in_channels[3],
out_channels[3],
kernel_size=3,
stride=2)
self.conv5 = conv_block(in_channels[4],
out_channels[4],
kernel_size=3,
stride=2)
self.layer1 = self._make_layer(block,
layer_nums[0],
in_channel=out_channels[0],
out_channel=out_channels[0])
self.layer2 = self._make_layer(block,
layer_nums[1],
in_channel=out_channels[1],
out_channel=out_channels[1])
self.layer3 = self._make_layer(block,
layer_nums[2],
in_channel=out_channels[2],
out_channel=out_channels[2])
self.layer4 = self._make_layer(block,
layer_nums[3],
in_channel=out_channels[3],
out_channel=out_channels[3])
self.layer5 = self._make_layer(block,
layer_nums[4],
in_channel=out_channels[4],
out_channel=out_channels[4])
def _make_layer(self, block, layer_num, in_channel, out_channel):
"""
Make Layer for DarkNet.
:param block: Cell. DarkNet block.
:param layer_num: Integer. Layer number.
:param in_channel: Integer. Input channel.
:param out_channel: Integer. Output channel.
Examples:
_make_layer(ConvBlock, 1, 128, 256)
"""
layers = []
darkblk = block(in_channel, out_channel)
layers.append(darkblk)
for _ in range(1, layer_num):
darkblk = block(out_channel, out_channel)
layers.append(darkblk)
return nn.SequentialCell(layers)
def construct(self, x):
c1 = self.conv0(x)
c2 = self.conv1(c1)
c3 = self.layer1(c2)
c4 = self.conv2(c3)
c5 = self.layer2(c4)
c6 = self.conv3(c5)
c7 = self.layer3(c6)
c8 = self.conv4(c7)
c9 = self.layer4(c8)
c10 = self.conv5(c9)
c11 = self.layer5(c10)
if self.detect:
return c7, c9, c11
return c11
def get_out_channels(self):
return self.outchannel
def darknet53():
"""
Get DarkNet53 neural network.
Returns:
Cell, cell instance of DarkNet53 neural network.
Examples:
darknet53()
"""
return DarkNet(ResidualBlock, [1, 2, 8, 8, 4],
[32, 64, 128, 256, 512],
[64, 128, 256, 512, 1024])