mindspore/tests/st/ops/gpu/test_tensor_array.py

121 lines
4.0 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
class TensorArrayNet(nn.Cell):
def __init__(self, dtype, element_shape, is_dynamic_shape=True, size=0):
super(TensorArrayNet, self).__init__()
self.ta = nn.TensorArray(dtype, element_shape, is_dynamic_shape, size)
def construct(self, index, value):
for i in range(2):
for _ in range(10):
self.ta.write(index, value)
index += 1
value += 1
if i == 0:
self.ta.clear()
index = 0
v = self.ta.read(index-1)
s = self.ta.stack()
self.ta.close()
return v, s
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tensorarray():
"""
Feature: TensorArray gpu TEST.
Description: Test the function write, read, stack, clear, close in both graph and pynative mode.
Expectation: success.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
index = Tensor(0, mindspore.int64)
value = Tensor(5, mindspore.int64)
ta = TensorArrayNet(dtype=mindspore.int64, element_shape=())
v, s = ta(index, value)
expect_v = 24
expect_s = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
assert np.allclose(s.asnumpy(), expect_s)
assert np.allclose(v.asnumpy(), expect_v)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
tb = nn.TensorArray(mindspore.int64, ())
for i in range(5):
tb.write(i, 99)
v = tb.read(0)
s = tb.stack()
expect_v = 99
expect_s = [99, 99, 99, 99, 99]
assert np.allclose(s.asnumpy(), expect_s)
assert np.allclose(v.asnumpy(), expect_v)
tb_size = tb.size()
assert np.allclose(tb_size.asnumpy(), 5)
tb.clear()
tb_size = tb.size()
assert np.allclose(tb_size.asnumpy(), 0)
tb.write(0, 88)
v = tb.read(0)
s = tb.stack()
tb.close()
expect_v = 88
expect_s = [88]
assert np.allclose(s.asnumpy(), expect_s)
assert np.allclose(v.asnumpy(), expect_v)
tc = nn.TensorArray(mindspore.float32, ())
tc.write(5, 1.)
s = tc.stack()
expect_s = [0., 0., 0., 0., 0., 1.]
assert np.allclose(s.asnumpy(), expect_s)
tc.write(2, 1.)
s = tc.stack()
expect_s = [0., 0., 1., 0., 0., 1.]
assert np.allclose(s.asnumpy(), expect_s)
tc.close()
td = nn.TensorArray(mindspore.bool_, ())
td.write(1, Tensor(True, mindspore.bool_))
s = td.stack()
v = td.read(1)
expect_s = [False, True]
assert np.allclose(v.asnumpy(), expect_s[1])
assert np.allclose(s.asnumpy(), expect_s)
td.close()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_static_tensorarray():
"""
Feature: TensorArray gpu TEST.
Description: Test the static tensorarray.
Expectation: success.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
index = Tensor(0, mindspore.int64)
value = Tensor(5, mindspore.int64)
ta = TensorArrayNet(dtype=mindspore.int64, element_shape=(), is_dynamic_shape=False, size=12)
v, s = ta(index, value)
expect_v = 24
expect_s = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 0, 0]
assert np.allclose(s.asnumpy(), expect_s)
assert np.allclose(v.asnumpy(), expect_v)