forked from mindspore-Ecosystem/mindspore
121 lines
4.0 KiB
Python
121 lines
4.0 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
|
|
class TensorArrayNet(nn.Cell):
|
|
def __init__(self, dtype, element_shape, is_dynamic_shape=True, size=0):
|
|
super(TensorArrayNet, self).__init__()
|
|
self.ta = nn.TensorArray(dtype, element_shape, is_dynamic_shape, size)
|
|
|
|
def construct(self, index, value):
|
|
for i in range(2):
|
|
for _ in range(10):
|
|
self.ta.write(index, value)
|
|
index += 1
|
|
value += 1
|
|
if i == 0:
|
|
self.ta.clear()
|
|
index = 0
|
|
v = self.ta.read(index-1)
|
|
s = self.ta.stack()
|
|
self.ta.close()
|
|
return v, s
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_tensorarray():
|
|
"""
|
|
Feature: TensorArray gpu TEST.
|
|
Description: Test the function write, read, stack, clear, close in both graph and pynative mode.
|
|
Expectation: success.
|
|
"""
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
index = Tensor(0, mindspore.int64)
|
|
value = Tensor(5, mindspore.int64)
|
|
ta = TensorArrayNet(dtype=mindspore.int64, element_shape=())
|
|
v, s = ta(index, value)
|
|
expect_v = 24
|
|
expect_s = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
|
|
assert np.allclose(s.asnumpy(), expect_s)
|
|
assert np.allclose(v.asnumpy(), expect_v)
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
tb = nn.TensorArray(mindspore.int64, ())
|
|
for i in range(5):
|
|
tb.write(i, 99)
|
|
v = tb.read(0)
|
|
s = tb.stack()
|
|
expect_v = 99
|
|
expect_s = [99, 99, 99, 99, 99]
|
|
assert np.allclose(s.asnumpy(), expect_s)
|
|
assert np.allclose(v.asnumpy(), expect_v)
|
|
tb_size = tb.size()
|
|
assert np.allclose(tb_size.asnumpy(), 5)
|
|
tb.clear()
|
|
tb_size = tb.size()
|
|
assert np.allclose(tb_size.asnumpy(), 0)
|
|
tb.write(0, 88)
|
|
v = tb.read(0)
|
|
s = tb.stack()
|
|
tb.close()
|
|
expect_v = 88
|
|
expect_s = [88]
|
|
assert np.allclose(s.asnumpy(), expect_s)
|
|
assert np.allclose(v.asnumpy(), expect_v)
|
|
tc = nn.TensorArray(mindspore.float32, ())
|
|
tc.write(5, 1.)
|
|
s = tc.stack()
|
|
expect_s = [0., 0., 0., 0., 0., 1.]
|
|
assert np.allclose(s.asnumpy(), expect_s)
|
|
tc.write(2, 1.)
|
|
s = tc.stack()
|
|
expect_s = [0., 0., 1., 0., 0., 1.]
|
|
assert np.allclose(s.asnumpy(), expect_s)
|
|
tc.close()
|
|
td = nn.TensorArray(mindspore.bool_, ())
|
|
td.write(1, Tensor(True, mindspore.bool_))
|
|
s = td.stack()
|
|
v = td.read(1)
|
|
expect_s = [False, True]
|
|
assert np.allclose(v.asnumpy(), expect_s[1])
|
|
assert np.allclose(s.asnumpy(), expect_s)
|
|
td.close()
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_static_tensorarray():
|
|
"""
|
|
Feature: TensorArray gpu TEST.
|
|
Description: Test the static tensorarray.
|
|
Expectation: success.
|
|
"""
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
index = Tensor(0, mindspore.int64)
|
|
value = Tensor(5, mindspore.int64)
|
|
ta = TensorArrayNet(dtype=mindspore.int64, element_shape=(), is_dynamic_shape=False, size=12)
|
|
v, s = ta(index, value)
|
|
expect_v = 24
|
|
expect_s = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 0, 0]
|
|
assert np.allclose(s.asnumpy(), expect_s)
|
|
assert np.allclose(v.asnumpy(), expect_v)
|