mindspore/tests/st/ops/gpu/test_sequence_mask_op.py

171 lines
7.3 KiB
Python

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore.ops.operations import _inner_ops as inner
import mindspore.nn as nn
import mindspore.context as context
def sequence_mask(x, maxlen):
return C.sequence_mask(Tensor(x.astype(np.int32)), maxlen)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sequence_mask_1d():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
a = np.array([2, 3, 1])
maxlen = 4
ms_out = sequence_mask(a, maxlen)
expected_out = Tensor(np.array([[True, True, False, False],
[True, True, True, False],
[True, False, False, False]]))
np.testing.assert_array_equal(expected_out.asnumpy(), ms_out.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sequence_mask_2d():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
a = np.array([[0, 1, 3, 2], [1, 4, 4, 2]])
maxlen = 6
ms_out = sequence_mask(a, maxlen)
expected_out = Tensor(np.array([[[False, False, False, False, False, False],
[True, False, False, False, False, False],
[True, True, True, False, False, False],
[True, True, False, False, False, False]],
[[True, False, False, False, False, False],
[True, True, True, True, False, False],
[True, True, True, True, False, False],
[True, True, False, False, False, False]]]))
np.testing.assert_array_equal(expected_out.asnumpy(), ms_out.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sequence_mask_3d():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
a = np.array([[[2, 2], [1, 1]],
[[2, 0], [2, 1]],
[[0, 0], [0, 0]]])
maxlen = 2
ms_out = sequence_mask(a, maxlen)
expected_out = Tensor(np.array([[[[True, True], [True, True]], [[True, False], [True, False]]],
[[[True, True], [False, False]], [[True, True], [True, False]]],
[[[False, False], [False, False]], [[False, False], [False, False]]]]))
np.testing.assert_array_equal(expected_out.asnumpy(), ms_out.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sequence_mask_maxlen_1():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
a = np.array([[[0, 1], [1, 1]],
[[1, 0], [1, 1]],
[[0, 1], [0, 1]]])
maxlen = 1
ms_out = sequence_mask(a, maxlen)
expected_out = Tensor(np.array([[[[False], [True]], [[True], [True,]]],
[[[True], [False]], [[True], [True]]],
[[[False], [True]], [[False], [True]]]]))
np.testing.assert_array_equal(expected_out.asnumpy(), ms_out.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sequence_mask_dynamic():
class SequenceMaskDynamicNet1(nn.Cell):
def __init__(self, maxlen):
super(SequenceMaskDynamicNet1, self).__init__()
self.maxlen = maxlen
self.convert_to_dynamic_shape = inner.GpuConvertToDynamicShape()
def construct(self, x):
converted_to_dynamic_shape = self.convert_to_dynamic_shape(x)
return C.sequence_mask(converted_to_dynamic_shape, self.maxlen)
class SequenceMaskDynamicNet2(nn.Cell):
def __init__(self):
super(SequenceMaskDynamicNet2, self).__init__()
self.convert_to_dynamic_shape = inner.GpuConvertToDynamicShape()
def construct(self, x):
converted_to_dynamic_shape = self.convert_to_dynamic_shape(x)
return C.sequence_mask(converted_to_dynamic_shape)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
sequence_mask_net = SequenceMaskDynamicNet1(4)
a = Tensor(np.array([0, 1, 0, 2, 0, 5]))
ms_out = sequence_mask_net(a)
expected_out = Tensor(np.array([[False, False, False, False],
[True, False, False, False],
[False, False, False, False],
[True, True, False, False],
[False, False, False, False],
[True, True, True, True]]))
np.testing.assert_array_equal(expected_out.asnumpy(), ms_out.asnumpy())
a = Tensor(np.array([[4, 3, 0], [0, 1, 3]]))
ms_out = sequence_mask_net(a)
expected_out = Tensor(np.array([[[True, True, True, True],
[True, True, True, False],
[False, False, False, False]],
[[False, False, False, False],
[True, False, False, False],
[True, True, True, False]]]))
np.testing.assert_array_equal(expected_out.asnumpy(), ms_out.asnumpy())
net_without_maxlen = SequenceMaskDynamicNet2()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
a = np.array([2, 3, 1])
ms_out = net_without_maxlen(Tensor(a))
expected_out = Tensor(np.array([[True, True, False],
[True, True, True],
[True, False, False]]))
np.testing.assert_array_equal(expected_out.asnumpy(), ms_out.asnumpy())
def sequence_mask_optional(x):
return C.sequence_mask(Tensor(x.astype(np.int32)))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sequence_mask_optional_maxlen():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
a = np.array([2, 3, 1])
ms_out = sequence_mask_optional(a)
expected_out = Tensor(np.array([[True, True, False],
[True, True, True],
[True, False, False]]))
np.testing.assert_array_equal(expected_out.asnumpy(), ms_out.asnumpy())
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
a = np.array([2, 3, 1])
ms_out = sequence_mask_optional(a)
expected_out = Tensor(np.array([[True, True, False],
[True, True, True],
[True, False, False]]))
np.testing.assert_array_equal(expected_out.asnumpy(), ms_out.asnumpy())